
MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 1

Solutions

1. Boyce and DiPrima, p. 40, Problem 10 (c).

Solution: In standard form the given first-order linear ODE is:

y′ − 1

t
y = te−t, t > 0.

An integrating factor is given by

µ = e−
∫

1
t
dt = e− ln t =

1

t
.

Multiplying both sides of the ODE by µ, we obtain

d

dt

(
1

t
y

)
= e−t,

which has the general solution

y(t) = −te−t + Ct,

where C is a constant. As t→∞, we see that y(t)→∞ if C > 0, y(t)→ 0 if C = 0,
and y(t)→ −∞ if C < 0.

2. Boyce and DiPrima, p. 40, Problem 18.

Solution: First we put the given linear first-order ODE in standard form:

y′ +
2

t
y =

sin t

t
, t > 0.

An integrating factor is given by

µ = e
∫

2
t
dt = e2 ln t = t2.

Multiplying both sides of the ODE by µ, we obtain

d

dt

(
t2y
)

= t sin t.
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Integrating both sides of the preceding equation, we get

t2y(t) =

∫
t sin t dt

=

∫
t d(− cos t) = −t cos t+

∫
cos t dt

= −t cos t+ sin t+ C,

where C is a constant. From the initial condition y(π/2) = 1, we deduce that C =
(π/2)2 − 1. Hence the solution to the given initial-value problem is:

y =
1

t2

(
π2

4
− 1 + sin t− t cos t

)
.

3. Boyce and DiPrima, p. 40, Problem 20.

Solution: In standard form the given equation reads:

y′ +

(
1 +

1

t

)
y = 1, t > 0.

An integrating factor is given by

µ = exp

(∫ (
1 +

1

t

)
dt

)
= et+ln t = et · eln t = tet.

Multiplying both sides of the ODE by µ, we obtain

d

dt

(
t ety

)
= t et.

Integrating both sides of the preceding equation with respect to t yields

t ety = t et − et + C,

or

y = 1− 1

t
+
Ce−t

t
,

where C is a constant to be determined by the initial condition. From the initial
condition that y(ln 2) = 1, we obtain C = 2. Hence the solution to the given initial-
value problem is:

y = 1− 1

t
+

2e−t

t
.
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4. Boyce and DiPrima, p. 40, Problem 28.

Solution: It is easy to solve the initial-value problem

y′ +
2

3
y = 1− 1

2
t, y(0) = yo

to get the solution

y(t) =
21

8
− 3

4
t+ (yo −

21

8
)e−2t/3.

Indeed, µ = e2t/3 is an integrating factor. Multiplying both sides of the given equation
by µ, we obtain

(ye2t/3)′ = e2t/3 − 1

2
te2t/3.

Integrating both sides of the preceding equation, we get

ye2t/3 =
3

2
e2t/3 − 1

2

∫
te2t/3 dt

=
3

2
e2t/3 − 1

2

(
t · 3

2
e2t/3 − 9

4
e2t/3

)
+ C,

where we have used integration by parts. Using the initial condition to put C in terms
of yo leads to the solution given above.

If there is a t = τ at which the solution touches the t-axis but does not cross it, then
at t = τ we have y(τ) = 0 and y′(τ) = 0. From the given differential equation, we
observe that τ = 2. It follows that

y(2) =
21

8
− 3

2
+ (yo −

21

8
)e−4/3 = 0,

from which we obtain

yo =
21− 9e4/3

8
= −1.642876.

5. Boyce and DiPrima, p. 41, Problem 30.

Solution: Multiplying both sides of the ODE

y′ − y = 1 + 3 sin t

by the integrating factor µ = e−t, we obtain

(e−ty)′ = e−t + 3e−t sin t.

Integrating both sides of the preceding equation, we get

e−ty = −e−t + 3

∫
e−t sin t dt = −e−t + 3I, (1)
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where I =
∫
e−t sin t dt. Using integration by parts twice, we have

I =

∫
e−td(− cos t) = −e−t cos t−

∫
e−t cos t dt

= −e−t cos t−
(
e−t sin t+

∫
e−t sin t dt

)
= −e−t(sin t+ cos t)− I + C1.

Hence I = −1
2

(e−t(sin t+ cos t) + C1). Substituting this expression of I into (1), we
obtain the general solution of the given differential equation:

y = −1− 3

2

(
e−t(sin t+ cos t)

)
+ Cet,

where C is a constant. Imposing the initial condition y(0) = yo leads to the solution
of the given initial-value problem:

y(t) = −1− 3

2
(sin t+ cos t) +

(
yo +

5

2

)
et.

For a bounded solution, we must have yo = −5/2.

6. Boyce and DiPrima, p. 48, Problem 2.

Solution: From y′ =
x2

y(1 + x3)
, we get

ydy =
x2

1 + x3
dx.

It follows that the general solution is:

y2

2
=

1

3
ln |1 + x3|+ C.

The given differential equation requires that y 6= 0 and x 6= −1.

7. Boyce and DiPrima, p. 48, Problem 16 (a), (c).

Solution: From y′ =
x(x2 + 1)

4y3
, we get

4y3dy = (x3 + x)dx,

which has the general solution

y4 =
x4

4
+
x2

2
+ C.
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The initial condition y(0) = −1/
√

2 dictates that C = 1/4. Hence we have

y4 =
x4 + 2x2 + 1

4
=

(x2 + 1)2

4
.

It follows that the solution to the given initial-value problem is:

y = −
√
x2 + 1

2
.

The domain of the solution is clearly (−∞,∞).

8. Boyce and DiPrima, p. 49, Problem 22.

Solution: The given equation y′ = 3x2/(3y2−4) is separable. Separating the variables
and integrating both sides of the equation, we get∫

(3y2 − 4) dy =

∫
3x2 dx+ C

or
y3 − 4y = x3 + C,

where C is a constant to be determined from the initial condition. From the initial
condition y(1) = 0, we obtain C = −1. Hence the required solution is given implicitly
by the equation

y3 − 4y = x3 − 1.

A glance at the given differential equation reveals that y′ → ±∞ as y → ±2/
√

3.
When y = 2/

√
3, x = [1 − 16/(3

√
3)]1/3 ≈ −1.276; when y = −2/

√
3, x = [1 +

16/(3
√

3)]1/3 ≈ 1.598. Hence the approximate interval on which the solution is defined
is (−1.276, 1.598), which contains the point x = 1.

9. Boyce and DiPrima, p. 49, Problem 24.

Solution: It is easy to solve the initial-value problem

y′ =
2− ex

3 + 2y
, y(0) = 0.

The solution is
3y + y2 = 2x− ex + 1

or in explicit form

y = −3

2
+

√
13

4
+ 2x− ex.

The solution y assumes its maximum value when the function f(x) = 13/4 + 2x − ex
is at its absolute maximum. Note that f ′(x) = 0 implies 2 = ex or x = ln 2, and
f ′′(ln 2) = −2 < 0. Hence f has only one local maximum, which is located at x = ln 2.
Since f(ln 2) = 13/4 + 2(ln 2 − 1) > f(0) = 9/4, f attains its maximum value at
x = ln 2.
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10. Boyce and DiPrima, p. 51, Problem 38.

Solution: (a) The given differential equation can be put in the form

dy

dx
= f(y/x), where f(y/x) =

3(y/x)2 − 1

2(y/x)
.

Hence the given differential equation is homogeneous.

(b) The substitution y = vx reduces the given differential equation to the form

v′x+ v =
3

2
v − 1

2v
,

which is equivalent to

x
dv

dx
=

1

2

(
v − 1

v

)
=

1

2
· v

2 − 1

v
.

It is easy to see that v = 1 and v = −1 are special solutions of the preceding differential
equation. To seek other solutions (i.e., v 6= ±1), we put the separable equation in the
form

2v

v2 − 1
dv =

dx

x
.

The general solution to the preceding equation is:

ln |v2 − 1| = ln |x|+ C1 or ln

∣∣∣∣y2 − x2x3

∣∣∣∣ = C1,

which can be put in the form∣∣∣∣y2 − x2x3

∣∣∣∣ = C, where C = eC1 is a positive constant.

Note that if we put C = 0, then we get y = ±x, which are none other than the special
solutions v = ±1. Thus the formula |y2 − x2| = C|x3|, where the constant C ≥ 0,
includes all solutions of the given differential equation.
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