
MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 3

Solutions

1. Boyce and DiPrima, p. 75, Problems 3 and 6.

Solution: Problem 3. Note that the interval which contains π and on which p(t) =
tan t is continuous is (π/2, 3π/2), and g(t) = sin t is continuous on (−∞,∞). By
Theorem 2.4.1, there exists a unique solution of the given initial-value problem on
(π/2, 3π/2).

Problem 6. First we put the given ODE in standard form: For t > 0 and t 6= 1,

y′ +
1

ln t
y =

cot t

ln t
.

The interval which contains 2 and on which p(t) = 1/ ln t and g(t) = cot t/ ln t are
continuous is (1,∞) ∩ (0, π). Hence by Theorem 2.4.1, the given initial-value problem
has a unique solution on (1, π).

2. Boyce and DiPrima, p. 76, Problems 9 and 10.

Solution: Problem 9. Let f(t, y) =
ln |ty|

1− t2 + y2
. Then

∂f

∂y
=

(1− t2 + y2)− 2y2 ln |ty|
y(1− t2 + y2)2

.

Both f and ∂f/∂y are continuous on the open region

Ω = {(t, y) ∈ R2 : t 6= 0, y 6= 0, 1− t2 + y2 6= 0},

which is the region where the hypotheses of Theorem 2.4.2 are satisfied.

Problem 10. Let f(t, y) = (t2 + y2)3/2. Then ∂f/∂y = 3y(t2 + y2)1/2. Both f and
∂f/∂y are continuous on the entire ty-plane. Hence the hypotheses of Theorem 2.4.2
are satisfied everywhere in the ty-plane.

3. Boyce and DiPrima, p. 76, Problem 14.

Solution: For yo = 0, clearly y = 0, which is defined on (−∞,∞), is the unique
solution of the initial-value problem in question.

1



For yo 6= 0, by the uniqueness theorem the solution curve will never meet the line y = 0,
i.e., y(t) 6= 0 for all t. By dividing both sides of the given ODE by y2, we separate the
variables and obtain

1

y2
dy = 2tdt, or − 1

y
= t2 + C.

The initial condition y(0) = yo dictates that C = −1/yo. Hence the solution of the
initial-value problem is

y =
−1

t2 − 1/yo
.

For yo < 0, we have t2 − 1/yo > 0, and the solution is defined on (−∞,∞).

For yo > 0, the solution cannot cross the lines t = ±
√

1/yo. Since 0 ∈ (−1/
√
yo, 1/

√
yo),

the interval of existence of the solution is (−1/
√
yo, 1/

√
yo).

4. Boyce and DiPrima, p. 77, Problem 22.

Solution: Let f(t, y) =
−t+ (t2 + 4y)1/2

2
.

(a) For y1(t) = 1− t, we have y′1 = −1 and

f(t, 1− t) =
−t+

√
(t− 2)2

2
=

{ −t+(t−2)
2

−t+(2−t)
2

=

{
−1 for t ≥ 2

1− t for t < 2.

Hence y1 is a solution of the given initial-value problem for t ≥ 2. For y2(t) = −t2/4,
we have y′2 = −t/2 and f(t,−t2/4) = −t/2 for all t; moreover, y2(2) = −1. Hence y2
is a solution of the given initial-value problem for all t.

(b) Since
∂f

∂y
=

1√
t2 + 4y

, which is not continuous in any rectangular box containing

the point (t, y) = (2,−1), the hypotheses of Theorem 2.4.2 are not all satisfied. Hence
the existence of two solutions of the given problem does not contradict Theorem 2.4.2.

(c) For y = ct+ c2, where c is a constant, we have y′(t) = c and

f(t, ct+ c2) =
−t+

√
(t+ 2c)2

2
= c

for t ≥ −2c, and f(t, ct + c2) = −(t + c) for t < −2c. Hence y = ct + c2 satisfies
the given differential equation for t ≥ −2c. It is obvious that if c = −1, the initial
condition is also satisfied, and the solution y = y1(t) is obtained.

If y = ct + c2 = y2(t) = −t2/4, then ct + c2 = −t2/4 or (t + 2c)2 = 0, which implies
t = −2c. This is impossible because t is a variable and c is a constant. Therefore there
is no choice of constant c which makes y = ct+ c2 = y2(t).
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Figure 1: Sketch of the graph of f(y) = y(y − 1)(y − 2).

5. Boyce and DiPrima, p. 88, Problem 3.

Solution: Here dy/dt = f(y) = y(y − 1)(y − 2), y0 ≥ 0. Hence the critical points, at
which f(y) = 0, are: y = 0, 1, 2. A sketch of the graph of f is given in Figure 1.

The critical points divide (0,∞) into three open intervals, namely: (0, 1), (1, 2), and
(2,∞). It is easy to see that y′ = f(y) > 0 and y(t) is increasing for y ∈ (0, 1) and
y ∈ (2,∞); y′ = f(y) < 0 and y(t) is decreasing for y ∈ (1, 2). See Figure 1. The phase
line of the system modeled by the given differential equation (with y0 ≥ 0) is shown
in Figure 2. It follows that the critical points y = 0, y = 1, and y = 2 are unstable,
asymptotically stable, and unstable, respectively.

To determine the concavity of solution curves, we examine the sign of y′′ = f(y)f ′(y).

y
210

- � -

Figure 2: Phase line of system modeled by y′ = y(y − 1)(y − 2), y0 ≥ 0.
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Intervals for y (0, a) (a, 1) (1, b) (b, 2) (b,∞)
y′ = f(y) + + − − +
f ′(y) + − − + +

y′′ = f(y)f ′(y) + − + − +
Concavity CU CD CU CD CU

Table 1: Concavity of solution curves on various intervals for y.

By direct differentiation, we find f ′(y) = 3y2− 6y+ 2 and f assumes a local maximum
at a = 1−

√
3/3 and a local minimum at b = 1+

√
3/3. Thus f ′(y) > 0 on the intervals

(0, a) and (b,∞); f ′(y) < 0 on the interval (a, b). From the sign of f(y) and of f ′(y),
we infer the concavity of solution curves on various intervals for y; see Table 1.

Representative solution curves will be sketched on the board in class on Wednesday,
9/23.

6. Boyce and DiPrima, p. 89, Problem 8.

Solution: Here dy/dt = f(y) = −k(y − 1)2, k > 0,−∞ < y0 < ∞. There is only one
critical point: y = 1. A sketch of the graph of f for the case k = 2 is given in Figure 3.

y	
  
f(y)	
  

Figure 3: Sketch of the graph of f(y) = −k(y − 1)2, where k is taken as 2.
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Figure 4: Phase line of system modeled by y′ = −k(y − 1)2, k > 0.

The critical point y = 1 divides (−∞,∞) into two open intervals: (−∞, 1) and (1,∞),
on both of which y′ = f(y) < 0. The phase line in question is shown in Figure 4. It is
clear that the critical point y = 1 is semi-stable.

Since f ′(y) = −2k(y − 1), clearly f ′(y) > 0 for y ∈ (−∞, 1), and f ′(y) < 0 for
y ∈ (1,∞). It follows that y′′(t) = f(y)f ′(y) < 0 and solution curves are concave down
when y ∈ (−∞, 1); y′′(t) = f(y)f ′(y) > 0 and solution curves are concave up when
y ∈ (1,∞).

Representative solution curves will be sketched on the board in class on Wednesday,
9/23.

y	
  

f(y)	
  

Figure 5: Sketch of the graph of f(y) = y(1− y2).
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Figure 6: Phase line of system modeled by y′ = y(1− y2), −∞ < y0 <∞.

Intervals for y (−∞,−1) (−1,−1/
√

3) (−1/
√

3, 0) (0, 1/
√

3) (1/
√

3, 1) (1,∞)
y′ = f(y) + − − + + −
f ′(y) − − + + − −

y′′ = f(y)f ′(y) − + − + − +
Concavity CD CU CD CU CD CU

Table 2: Concavity of solution curves on various intervals for y.

7. Boyce and DiPrima, p. 89, Problem 10.

Solution: Here dy/dt = f(y) = y(1 − y2), −∞ < y0 < ∞. The critical points are
clearly: y = −1, 0, 1. A sketch of the graph of f is given in Figure 5.

The critical points divide (−∞,∞) into four open intervals, namely: (−∞,−1), (−1, 0),
(0, 1), and (1,∞). It is easy to see that y′ = f(y) > 0 and y(t) is increasing for
y ∈ (−∞,−1) and y ∈ (0, 1); y′ = f(y) < 0 and y(t) is decreasing y ∈ (−1, 0) and
y ∈ (1,∞). See Figure 5. The phase line of the system modeled by the given differen-
tial equation is shown in Figure 6. It follows that the critical points y = −1, y = 0,
and y = 1 are asymptotically stable, unstable, and asymptotically stable, respectively.

To determine the concavity of solution curves, we examine the sign of y′′ = f(y)f ′(y).
By direct differentiation, we find f ′(y) = 1 − 3y2 and f assumes a local minimum at
y = −1/

√
3 and a local maximum at y = 1/

√
3. Thus f ′(y) < 0 on the intervals

(−∞,−1/
√

3) and (1/
√

3,∞); f ′(y) > 0 on the interval (−1/
√

3, 1/
√

3). From the
sign of f(y) and of f ′(y), we infer the concavity of solution curves on various intervals
for y; see Table 2.

Representative solution curves will be sketched on the board in class on Wednesday,
9/23.

8. Boyce and DiPrima, p. 90, Problem 18.

Solution: (a) Let V (t) and A(t) be the volume and surface area of water in the
conical pond at time t, respectively. Let r(t) be the radius of the water surface and
d(t) be the depth of the water at the center of the pond. Then we have

d(t) =
hr(t)

a
, and V (t) =

1

3
πr2(t)d(t) =

(
πh

3a

)
r3(t),
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which imply

r(t) =

(
3aV (t)

πh

)1/3

, and A(t) = π

(
3a

πh

)2/3

V 2/3(t).

Hence, by the given hypotheses, V (t) satisfies the differential equation

dV

dt
= k − αA = k − π

(
3a

πh

)2/3

V 2/3,

where α is the coefficient of evaporation.

(b) In what follows we use the suffix “eq” to denote the equilibrium value of a quantity.
The equilibrium depth deq of water in the pond is determined by the condition V ′ = 0
or Aeq = k/α. Since

Aeq = πr2eq = π(adeq/h)2,

the equilibrium depth is given by

deq =

√
k

απ
· h
a
.

Note that V ′ < 0 and V ′ > 0 when V > Veq and V < Veq, respectively. Hence the
equilibrium is asymptotically stable.

(c) The pond will not overflow if deq ≤ h or k ≤ απa2.
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