MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 3

Solutions

1. Boyce and DiPrima, p. 75, Problems 3 and 6.
Solution: Problem 3. Note that the interval which contains 7 and on which p(t) =
tant is continuous is (7/2,37/2), and g(t) = sint is continuous on (—o0,0). By
Theorem 2.4.1, there exists a unique solution of the given initial-value problem on
(7/2,3m/2).
Problem 6. First we put the given ODE in standard form: For ¢ > 0 and ¢ # 1,

o I cott
Y"1t ™ e

The interval which contains 2 and on which p(¢t) = 1/Int and ¢(t) = cott/Int are
continuous is (1,00) N (0, 7). Hence by Theorem 2.4.1, the given initial-value problem
has a unique solution on (1, 7).

2. Boyce and DiPrima, p. 76, Problems 9 and 10.

Solution: Problem 9. Let f(t,y) = — e
- Y

of _ (1-#+y%) —2y°In|ty|
dy oyl - +y?)?

Both f and 0f /0y are continuous on the open region

Q={(t,y) eR*:t £ 0,y #0,1— 1" +y> # 0},
which is the region where the hypotheses of Theorem 2.4.2 are satisfied.

Problem 10. Let f(t,y) = (> +y*)%%. Then 0f/0y = 3y(t* + 4?)"/2. Both f and
Jf /0y are continuous on the entire ty-plane. Hence the hypotheses of Theorem 2.4.2
are satisfied everywhere in the ty-plane.

3. Boyce and DiPrima, p. 76, Problem 14.

Solution: For y, = 0, clearly y = 0, which is defined on (—o0,00), is the unique
solution of the initial-value problem in question.
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For y, # 0, by the uniqueness theorem the solution curve will never meet the line y = 0,
i.e., y(t) # 0 for all t. By dividing both sides of the given ODE by 2, we separate the
variables and obtain

1 1
—dy = 2tdt, or ——=t’4+C.
Yy Yy

The initial condition y(0) = y, dictates that C' = —1/y,. Hence the solution of the

initial-value problem is
-1

- 1/yo‘
For y, < 0, we have t* — 1/y, > 0, and the solution is defined on (—o0, 00).

For , > 0, the solution cannot cross the lines t = £1/1/y,. Since 0 € (=1//Yo, 1/\/¥o),
the interval of existence of the solution is (—1/1/Yo, 1/\/Yo)-

y:

. Boyce and DiPrima, p. 77, Problem 22.

Lt (82 Ay)'?
- 5 ,
(a) For y;1(t) =1 —t, we have yj = —1 and

f(tl—t)—_HV(t_Q)?—{ e —{ oo rt=2

Solution: Let f(,y)

”TH 1—t fort<2.
Hence y; is a solution of the given initial-value problem for ¢t > 2. For y(t) = —t2/4,
we have y, = —t/2 and f(t,—t?/4) = —t/2 for all t; moreover, y»(2) = —1. Hence y,
is a solution of the given initial-value problem for all ¢.

1
(b) Since —— = —————, which is not continuous in any rectangular box containing

Oy 2+ 4y
the point (¢,y) = (2, —1), the hypotheses of Theorem 2.4.2 are not all satisfied. Hence
the existence of two solutions of the given problem does not contradict Theorem 2.4.2.

(c) For y = ct + ¢?, where c is a constant, we have y/(t) = ¢ and

—t 4+ 4/ (t + 2¢)?
flt,ct+c*) = il é + 2¢) =c
for t > —2c¢, and f(t,ct + ) = —(t + ¢) for t < —2c. Hence y = ct + ¢* satisfies
the given differential equation for ¢t > —2¢. It is obvious that if ¢ = —1, the initial

condition is also satisfied, and the solution y = y;(¢) is obtained.

If y = ct + = yo(t) = —t*/4, then ct + ¢ = —t?/4 or (t + 2¢)? = 0, which implies
t = —2c¢. This is impossible because t is a variable and c¢ is a constant. Therefore there
is no choice of constant ¢ which makes y = ct + ¢ = yo(t).
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Figure 1: Sketch of the graph of f(y) =y(y — 1)(y — 2).

5. Boyce and DiPrima, p. 88, Problem 3.
Solution: Here dy/dt = f(y) = y(y — 1)(y — 2),yo > 0. Hence the critical points, at
which f(y) =0, are: y = 0,1,2. A sketch of the graph of f is given in Figure 1.

The critical points divide (0, 00) into three open intervals, namely: (0, 1), (1,2), and
(2,00). It is easy to see that ¢y = f(y) > 0 and y(t) is increasing for y € (0,1) and
y € (2,00); ¥ = f(y) < 0and y(t) is decreasing for y € (1,2). See Figure 1. The phase
line of the system modeled by the given differential equation (with yo > 0) is shown

in Figure 2. It follows that the critical points y = 0, y = 1, and y = 2 are unstable,
Y

asymptotically stable, and unstable, respectively.
To determine the concavity of solution curves, we examine the sign of ¥ = f(y)f'(y).

Figure 2: Phase line of system modeled by ' = y(y — 1)(y — 2), yo > 0.



Intervals for y | (0,a) (a,1) (1,b) (b,2) (b, 00)
y' = f(y) + + - - +
f'(y) + - - + +
y=rfy, + -  + - +
Concavity cu Cb Ccu CD CU

Table 1: Concavity of solution curves on various intervals for y.

By direct differentiation, we find f’(y) = 3y? — 6y + 2 and f assumes a local maximum
at a = 1—+/3/3 and a local minimum at b = 14+/3/3. Thus f’(y) > 0 on the intervals
(0,a) and (b,00); f'(y) < 0 on the interval (a,b). From the sign of f(y) and of f'(y),

we infer the concavity of solution curves on various intervals for y; see Table 1.
Representative solution curves will be sketched on the board in class on Wednesday,
9/23.

. Boyce and DiPrima, p. 89, Problem 8.

Solution: Here dy/dt = f(y) = —k(y — 1)?, k > 0,—00 < yy < oo. There is only one
critical point: y = 1. A sketch of the graph of f for the case k = 2 is given in Figure 3.
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Figure 3: Sketch of the graph of f(y) = —k(y — 1)?, where k is taken as 2.



Figure 4: Phase line of system modeled by v/ = —k(y — 1), k > 0.

The critical point y = 1 divides (—o0, 00) into two open intervals: (—oc, 1) and (1, 00),
on both of which ' = f(y) < 0. The phase line in question is shown in Figure 4. It is
clear that the critical point y = 1 is semi-stable.

Since f'(y) = —2k(y — 1), clearly f'(y) > 0 for y € (—o0,1), and f'(y) < 0 for
y € (1,00). It follows that y”(t) = f(y)f'(y) < 0 and solution curves are concave down
when y € (—o0,1); ¥"(t) = f(y)f'(y) > 0 and solution curves are concave up when
y € (1,00),

Representative solution curves will be sketched on the board in class on Wednesday,
9/23.
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Figure 5: Sketch of the graph of f(y) = y(1 — y?).
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Figure 6: Phase line of system modeled by ' = y(1 — 4?), —00 < 3y < 00.

Intervals for y | (—oo,—1) (=1,—1/v/3) (=1/+/3,0) (0,1/v/3) (1/v/3,1) (1,00)
y =y + - - + + -
f'() - - + + - -
y' =)' (y) — + - + - +
Concavity CD Cu CD Ccu CD Ccu

Table 2: Concavity of solution curves on various intervals for y.

7. Boyce and DiPrima, p. 89, Problem 10.

Solution: Here dy/dt = f(y) = y(1 — y?), —00 < yo < oo. The critical points are
clearly: y = —1,0,1. A sketch of the graph of f is given in Figure 5.

The critical points divide (—o0, 00) into four open intervals, namely: (—oo, —1), (—1,0),
(0,1), and (1,00). It is easy to see that ¥’ = f(y) > 0 and y(t) is increasing for
y € (—oo,—1) and y € (0,1); v = f(y) < 0 and y(t) is decreasing y € (—1,0) and
y € (1,00). See Figure 5. The phase line of the system modeled by the given differen-
tial equation is shown in Figure 6. It follows that the critical points y = —1, y = 0,
and y = 1 are asymptotically stable, unstable, and asymptotically stable, respectively.

To determine the concavity of solution curves, we examine the sign of " = f(y)f'(vy).
By direct differentiation, we find f’(y) = 1 — 3y? and f assumes a local minimum at
y = —1/4/3 and a local maximum at y = 1/v/3. Thus f/(y) < 0 on the intervals
(=00, —1//3) and (1/v/3,00); f'(y) > 0 on the interval (—1/v/3,1/4/3). From the
sign of f(y) and of f’'(y), we infer the concavity of solution curves on various intervals
for y; see Table 2.

Representative solution curves will be sketched on the board in class on Wednesday,
9/23.
8. Boyce and DiPrima, p. 90, Problem 18.

Solution: (a) Let V(t) and A(¢) be the volume and surface area of water in the
conical pond at time ¢, respectively. Let r(t) be the radius of the water surface and
d(t) be the depth of the water at the center of the pond. Then we have

d(t) = . and V(1) = card(t)d(t) = (”h) (1),

3a



which imply

r(t) = (%)1/3, and  A(t) =7 (3—a)2/3 V23 (4.

Hence, by the given hypotheses, V (t) satisfies the differential equation

dV 30\ ?? 9
o k—aA=k—rx <7Th> Vere,

where « is the coefficient of evaporation.

(b) In what follows we use the suffix “eq” to denote the equilibrium value of a quantity.
The equilibrium depth d., of water in the pond is determined by the condition V' =0
or Aeq = k/a. Since

Aoy = 7T7“zq = m(adeq/h)?,
the equilibrium depth is given by

deq =\ —
4 am

N
3

Note that V' < 0 and V' > 0 when V' > V., and V' < V., respectively. Hence the
equilibrium is asymptotically stable.

(c) The pond will not overflow if de < h or k < ama?.



