MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 8

Solutions

1. Boyce and DiPrima, Section 3.7, p. 203, Problem 3 and Problem 4.

Solution: In both of these problems, the given expression of u is recast in the form
u = Rcos(wpt — 0), where R and ¢ are given as follows.

Problem 3. Here A = Rcosd = 4, B = Rsind = —2. Hence R = VA2 + B2 = 2/5.

It follows that .
Ccosd = — sind = ——— tand = ——.

V5 V5’ 2
From the sign of cosd and of sind, we see that the angle 0 is in the 4th quadrant and
d = arctan(—1/2) ~ —0.4636 radians.

Problem 4. Here A = Rcosd = —2, B = Rsind = —3. Hence R = /A% + B2 = /13.
It follows that

2 : 3

CoSd = ——— sind = ——— tan(5:§.

Vi3 Vi3 2

From the sign of cosé and of sind, we see that the angle J is in the 3rd quadrant and
d = 7 + arctan(3/2) ~ 4.1244 radians.

2. Boyce and DiPrima, Section 3.7, p. 203, Problem 7.

Solution: In what follows we take the acceleration due to gravity g = 32 ft/s. Let k
be the spring constant in question. Then we have k = 31bf/(1/4) ft = 12 Ibf/ft. The
mass weighs 3 1bf. Hence the initial-value problem in question is

3
—u” +12u = 0, u(0) = —

22 u'(0) = 2.

Ea
The general solution of the differential equation is

u = Acos8V2t + Bsin8V/2t.

From the initial conditions, we find A = —1/12, B = v/2/8. Note that ¢ is in the 2nd
quadrant and tan§ = B/A = —3/+/2. Therefore the spring-mass system has vibration

frequency wy = 8v/2 s, period T = 7/(4v/2) s, amplitude R = /A2 + B2 = /11/288
ft, and phase § = 7 — arctan(3/v/2).



3. Boyce and DiPrima, Section 3.7, p. 204, Problem 11.

Solution: The spring constant of the spring is £ = 3/0.1 = 30 N/m. The damping
coefficient of the spring-mass system is v = 3/5 N-s/m?. Hence the displacement u of
the mass is governed by the equation of motion

3
2u” + gu’ +30u=0 or v +0.3u + 15u = 0.

The initial conditions for the motion are: «(0) = 0.05 m, «/(0) = 10 m/s. Solving the
initial-value problem, we obtain

u = e " Acos ut + Bsin ut),
where

Akm — 2
VI T 3870078 5!, A =0.05m, B =0.027777 m.

o= 2m ’

The displacement u can be written in the form
u = 0.057201e™ "% cos(3.870078¢ — 0.507087) m,

and the ratio /wy = 3.870078/v/15 = 0.99925.

4. Boyce and DiPrima, Section 6.1, p. 315, Problem 5.

Solution: Let n be a positive integer. For s > 0, we have

L[t"] = / t"etdt
’ A

= lim t"eSdt
A—o00 0

n —st7A 1 A
= lim ([ ¢ } —I——/ nt"_le_“dt>
A—o00 —S 0 S Jo

An —sA 00
—im 24 / le=st gy
0
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n oo n(n —1) _ n! n!
— L[ 11 = " P 1] = )
Cefr) = " )=
Putting n = 1 and n = 2, we obtain
1 9 2
L[t] = = and L[t*] = &

respectively.



5. Boyce and DiPrima, Section 6.1, p. 315, Problem 13.

Solution: By definition, we have

A A
Lle sinbt] = lim e™(sinbt) e *'dt = lim (sin bt) e @~ dt.

A—o0 0 A—00 0

Let I = fOA(sin bt) ela=)tdt. Using integration by parts, we observe that

in bt (a—s)t A b A
I = [(Sln ) € :| . / (COS bt) e(a—s)tdt
0 0

a—s a— s
] (a—s)A (a—s)t A A 1o
_ (sinbA)e b ([(COS bt) e } _/ bsin bte(a_s)tdt> '
a—s a—s a— s 0 0 a—Ss
For s > a, we obtain
b 1 b
Lle™sinbt] = lim [ = ( — L[e™ sin bt]) :
A=00 s—a\s—a s—a
It follows that
1+ v L[e™ sin bt] b
e sinbt] =
(s —a)? (s —a)*’
and )
E[e“t sin bt] = m for s > a.
6. Boyce and DiPrima, Section 6.1, p. 315, Problem 16.
Solution: By definition, we have
A
Lltsinat] = lim (tsinat) e *dt.
A—o0 0

Let I = fOA(t sinat) e~ *'dt. Using integration by parts, we observe that
t si t —st7A 1 A
I = {M} + —/ (sinat + at cos at) e *'dt.
—s o sJo

It follows that for s > 0,

Lltsinat] = lim [ = 1L[sin at] + gE[t cos at].
s

=1
A—o0 S

On the other hand, a similar calculation shows that for s > 0

—st7A A
1
L[tcosat] = lim ({—(t cosat) e ] + - / (cosat — atsin at) e_Stdt)
0

A—o0 —S 0 S

= —gﬁ[t sin at] + 1E[cos at].
s s



Hence we have

: . . a? . a
L[tsinat] = ;E[Sln at] — ?L[t sin at] + gﬁ[cos at].
It follows that
a? ) 1 a a s
(145) cesman = i+ 5w

or
. 2as
;C[t sin Clt] = m for s> 0.

. Boyce and DiPrima, Section 6.2, p. 324, Problem 5.

Solution: We have

25+ 2 s+1
-1 o p—1 ot
L [—32—1—25—1—5] =20 [—(34—1)2—1—221 = 2¢ ' cos 2t.

. Boyce and DiPrima, Section 6.2, p. 324, Problem 8.
Solution: First we break up F'(s) into partial fractions:

852—4s+12_A+Bs+C’
s(s24+4) s s244°

Multiplying both sides of the preceding equation by s(s? + 4), we obtain
85> —4s+12 = A(s* +4) + (Bs + C)s = (A + B)s* + Cs + 44,

which implies A =3, B =5, and C' = —4. It follows that

852 — 45+ 12 3 5s — 4
1|22 P A 1|2 -1 _ o
L { s(s2+ 4) } L L} + L {52‘1‘41 3 + 5cos 2t — 2sin 2t.

. Boyce and DiPrima, Section 6.2, p. 325, Problem 13.

Solution: Finding the Laplace transform of both sides of the given equation, we have
s2Y (s) — sy(0) — /' (0) — 2(sY (s) — y(0)) +2Y(s) = 0.

Using the initial conditions y(0) = 0 and 3'(0) = 1, we solve the preceding equation
for Y(s) and obtain
1 1

2-25+2 (s—1)2+12

Hence y(t) = €' sint is the solution of the given initial-value problem.

Y(s) =

4



10. Boyce and DiPrima, Section 6.2, p. 325, Problem 17.

Solution: Finding the Laplace transform of both sides of the given equation and
appealing to the initial conditions, we obtain the following equation for Y (s):

(s —4s° + 65> —4s+ 1)Y(s) = s —4ds + T.

Hence we have

s —ds+7 (s—1)0°—2(s—1)+4
(s—D1* (s —1)*
124
(s—102 (s—=1 (s—1*

Y(s) =

Therefore the solution to the given initial-value problem is:
b2, 23
y(t) = te" — tve —|—§te.

11. Boyce and DiPrima, Section 6.2, p. 325, Problem 22.

Solution: Finding the Laplace transform of both sides of the given equation and
appealing to the initial conditions, we obtain the following equation for Y'(s):

1
2 925+ 2)Y(s) = 1
(s s+2)Y(s) S+1—|— ,

or
1 1

Y(s)= .
(s) (s+1)(32—23—|—2)+52—25—|—2

Using partial fractions, we recast Y (s) as

¥ (s) 1 1 s—8
s) = — —
5\s+1 s2—-2s+4+2

101 5—8 101 s—1 7
S 5\s+1 (s—1)2+12)  5\s+1 (s—1)24+12 (s—1)24+12)"

Hence the solution of the given initial-value problem is:

(e’t — el cost + Te'sin t) )

o] =

y(t) =



