MA 214 002 Calculus IV (Spring 2016) Review Problems for Exam 1

1. Find the solution of the following initial value problem:

$$t^2 \frac{dy}{dt} - ty = t^3 + 2, \qquad y(-1) = 2.$$

Determine the largest interval on which the solution is defined.

2. Solve the following initial value problems:

(a)
$$\frac{dy}{dx} = 4x^3y - y$$
, $y(1) = -3$.
(b) $(x^3 + \frac{y}{x})dx + (y^2 + \ln x)dy = 0$, $y(1) = 0$.

Is equation (a) linear? Is it separable? Is it exact? Answer the same questions for equation (b).

3. It is known that the differential equation

$$x^2 + y + f(x)\frac{dy}{dx} = 0$$

becomes exact when multiplied by the integrating factor $\mu(x) = x$.

- (a) Find the differential equation that the function f must satisfy.
- (b) Find all possible functions f(x).
- 4. A 30-year-old woman accepts an engineering position with a starting salary of \$50,000 per year. Her salary S(t) increases exponentially, with $S(t) = 50 e^{t/20}$ thousand dollars after t years. Meanwhile 10% of her salary is deposited in a retirement account, at an annual rate of return of 5%.
 - (a) Formulate the initial-value problem that governs A(t), the amount in her retirement account after t years.
 - (b) Determine A(40), the amount available for her retirement at age 70. You may leave your answer in terms of e or take $e \approx 2.718$.
- 5. A 100-m³ tank is full of water that contains a pollutant Z at a concentration of 0.5 g/m³. Cleaner water, with a pollutant concentration of 0.1 g/m³, is pumped into the well-mixed tank at a rate of 4 m³/hour. Water flows out of the tank through an overflow valve at the same rate as it is pumped in. Determine the amount and concentration of pollutant in the tank as a function of the time elapsed since cleaner water is pumped in.

- 6. A 2000-liter tank is initially half full of water containing 10 kg of salt in solution. Water containing salt at a concentration of 0.2 kg/L enters at a rate of 5 L/h. An open valve allows the well-mixed solution to leave at 2 L/h. Water evaporates from the tank at 1 L/h.
 - (a) Find the time t_f at which the tank just begins to overflow, and determine the volume V(t) of solution in the tank as a function of the time t, for $0 \le t < t_f$.
 - (b) Determine the concentration of the solution in the tank at $t = t_f$.
- 7. Consider the initial-value problem

$$\frac{dy}{dt} + \sqrt{1 - y^2} = 0, \qquad y(0) = 1.$$

- (a) Show that $y_1(t) \equiv 1$ and $y_2(t) = \cos t$ both satisfy the given initial-value problem. Why does this fact not contradict Theorem 2.4.2 of Boyce and DiPrima's text on existence and uniqueness of solution for first-order equations?
- (b) Give the region of points (t_0, y_0) in the *ty*-plane for which the aforementioned theorem guarantees the existence of a unique solution y(t) that satisfies the given differential equation and the initial condition $y(t_0) = y_0$.
- 8. Determine the equilibrium solutions of the differential equation

$$\frac{dy}{dt} = 7y - y^2 - 10,$$

and classify each one as asymptotically stable, unstable, or semistable. Draw the phase line. For the initial condition $y(0) = y_0$, sketch several graphs of solutions in the t-yplane for various values of y_0 in $(-\infty, \infty)$. Explain why a solution curve of the given equation cannot meet any other solution curve in the t-y plane.

- 9. Find the general solution of each of the following differential equations:
 - (a) y'' + 5y' = 0;
 - (b) y'' 4y' + 4y = 0;
 - (c) y'' 2y' + 2y = 0.
- 10. (a) Use Euler's formula to write $\exp((1-2i)t)$, where $i = \sqrt{-1}$ and t is a real parameter, in the form a + ib.
 - (b) Solve the following initial value problem:

$$y'' + 2y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 0$.