MA 113-Calculus I
Spring 2002
SECOND MIDTERM 03/05/2002
Name: \qquad Sec.: \qquad

SEC.	INSTRUCTORS	T.A.'S	LECTURES	RECITATIONS
001	A. Corso	B. Bennewitz	MWF 8:00-8:50, CB 204	TR 8:00-9:15, CB 341
002	A. Corso	B. Bennewitz	MWF 8:00-8:50, CB 204	TR 9:30-10:45, CB 345
004	M. Silhavy	H. Song	MWF 10:00-10:50, CB 214	TR 8:00-9:15, CB 349
005	M. Silhavy	C. Budovsky	MWF 10:00-10:50, CB 214	TR 2:00-3:15, CB 343
006	M. Silhavy	H. Song	MWF 10:00-10:50, CB 214	TR 3:30-4:45, CB 345
007	A. Martin	M. Neu	MWF 12:00-12:50, CB 208	TR 9:30-10:45, CB 347
008	A. Martin	Y. Jia	MWF 12:00-12:50, CB 208	TR 11:00-12:15, CB 347
009	A. Martin	Y. Jia	MWF 12:00-12:50, CB 208	TR 12:30-1:45, CB 349
010	M. Silhavy	C. Budosvky	MWF 2:00-2:50, CB 204	TR 12:30-1:45, CB 345
011	M. Silhavy	M. Slone	MWF 2:00-2:50, CB 204	TR 2:00-3:15, CB 345
012	M. Silhavy	M. Slone	MWF 2:00-2:50, CB 204	TR 3:30-4:45, CB 349

Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes may be used. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. When answering these questions, please be sure to:

- check answers when possible,
- clearly indicate your answer and the reasoning used to arrive at that answer (unsupported answers may receive NO credit).

QUESTION	SCORE	TOTAL
$\mathbf{1 .}$		9
$\mathbf{2 .}$		15
$\mathbf{3 .}$		20
$\mathbf{4 .}$		10
$\mathbf{5 .}$		8
$\mathbf{6 .}$		20
$\mathbf{7 .}$		10
$\mathbf{8 .}$		8
TOTAL		100

1. The population of a bacterial colony after t hours is given by

$$
n(t)=48 t-t^{3}+100
$$

(a) (3 pts) Determine the growth rate as a function of time.
(b) (3 pts) Find the growth rate after 2 hours.
(c) (3 pts) Find the time t at which the population starts diminishing.
2. Compute the following limits. Each limit is worth 5 points.

Note: Remember to simplify your answers!
(a) $\lim _{x \rightarrow \pi / 6} \frac{3 \sin (-x)}{\cos ^{2}(2 x)}=$
(b) $\lim _{x \rightarrow 0} \frac{\cos ^{2}(3 x)-1}{x^{2}}=$
(c) $\lim _{x \rightarrow 2} \frac{\sin (x-2)}{x^{2}-x-2}=$
3. Compute the derivatives of the following functions. Each derivative is worth 5 points. Do not simplify your answers.
(a) If $y=\pi^{2}+x^{2} \sin (8 x)$ then $y^{\prime}=$
(b) If $y=\cos \sqrt{x}$ then $y^{\prime}=$
(c) If $y=\tan ^{2} x-\tan \left(x^{2}\right)$ then $y^{\prime}=$
(d) If $y=\frac{\cos x}{x-1}$ then $y^{\prime}=$
pts: $/ 20$
4. The volume of a ball is increasing at a rate of $10 \mathrm{~cm}^{3} / \mathrm{min}$. How fast is the surface area increasing when the radius is 30 cm ?
5. Each problem is worth 4 points
(a) Find the second derivative of $f(x)=\sqrt{1-x}$.
(b) If g is a twice differentiable function, find the second derivative of $f(x)=g\left(x^{2}+1\right)$ in terms of $g, g^{\prime}, g^{\prime \prime}$.
6. Calculate the derivatives of the following functions. Each derivative is worth 5 points. Do not simplify your answers.
(a) If $F(x)=\left(x^{3}-5\right)^{3}$ then $F^{\prime}(x)=$
(b) If $F(x)=\sqrt{x-4 x^{5}}$ then $F^{\prime}(x)=$
(c) If $F(x)=\sin (\cos (\sin x))$ then $\quad F^{\prime}(x)=$
(d) If $\quad F(x)=\sin \left(\frac{1-x}{1+x}\right) \quad$ then $\quad F^{\prime}(x)=$
pts: /20
7. Each problem is worth 5 points.
(a) Find the equation of the tangent line to the curve $y^{3}-2 x y+x^{3}=0$ at the point $P(1,1)$.
(b) Express the derivative of y with respect to x in terms of x and y if $y^{2}=\frac{x-1}{y-1}$.
8. Each part is worth 4 points.
(a) Find the linearization $L(x)$ of $f(x)=\sqrt[3]{x}$ at $a=27$.
(b) Estimate the value of $\sqrt[3]{28}$.

Note: A calculator solution is not an acceptable answer.

