MA 113 - Calculus I SECOND MIDTERM		Spring 200 03/05/2002	2 Name:	Sec.:
SEC.	INSTRUCTORS	T.A.'S	LECTURES	RECITATIONS
001	A. Corso	B. Bennewitz	MWF 8:00-8:50, CB 204	TR 8:00-9:15, CB 341
002	A. Corso	B. Bennewitz	MWF 8:00-8:50, CB 204	TR 9:30-10:45, CB 345
004	M. Silhavy	H. Song	MWF 10:00-10:50, CB 214	TR 8:00-9:15, CB 349
005	M. Silhavy	C. Budovsky	MWF 10:00-10:50, CB 214	TR 2:00-3:15, CB 343
006	M. Silhavy	H. Song	MWF 10:00-10:50, CB 214	TR 3:30-4:45, CB 345
007	A. Martin	M. Neu	MWF 12:00-12:50, CB 208	TR 9:30-10:45, CB 347
008	A. Martin	Y. Jia	MWF 12:00-12:50, CB 208	TR 11:00-12:15, CB 347
009	A. Martin	Y. Jia	MWF 12:00-12:50, CB 208	TR 12:30-1:45, CB 349
010	M. Silhavy	C. Budosvky	MWF 2:00-2:50, CB 204	TR 12:30-1:45, CB 345
011	M. Silhavy	M. Slone	MWF 2:00-2:50, CB 204	TR 2:00-3:15, CB 345
012	M. Silhavy	M. Slone	MWF 2:00-2:50, CB 204	TR 3:30-4:45, CB 349

Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes may be used. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. When answering these questions, please be sure to:

- check answers when possible,
- clearly indicate your answer and the reasoning used to arrive at that answer (*unsupported answers may receive NO credit*).

QUESTION	SCORE	TOTAL
1.		9
2.		15
3.		20
4.		10
5.		8
6.		20
7.		10
8.		8
TOTAL		100

1. The population of a bacterial colony after *t* hours is given by

 $n(t) = 48t - t^3 + 100.$

(a) (3 pts) Determine the growth rate as a function of time.

(b) (3 pts) Find the growth rate after 2 hours.

(c) (3 pts) Find the time t at which the population starts diminishing.

2. Compute the following limits. Each limit is worth 5 points.Note: Remember to simplify your answers!

(a)
$$\lim_{x \to \pi/6} \frac{3\sin(-x)}{\cos^2(2x)} =$$

(b)
$$\lim_{x \to 0} \frac{\cos^2(3x) - 1}{x^2} =$$

(c)
$$\lim_{x \to 2} \frac{\sin(x-2)}{x^2 - x - 2} =$$

- **3.** Compute the derivatives of the following functions. Each derivative is worth 5 points. Do not simplify your answers.
 - (a) If $y = \pi^2 + x^2 \sin(8x)$ then y' =_____

(b) If $y = \cos \sqrt{x}$ then y' =_____

(c) If $y = \tan^2 x - \tan(x^2)$ then y' =_____

(d) If
$$y = \frac{\cos x}{x - 1}$$
 then $y' =$ _____

4. The volume of a ball is increasing at a rate of $10 \text{ cm}^3/\text{min}$. How fast is the surface area increasing when the radius is 30 cm?

- 5. Each problem is worth 4 points
 - (*a*) Find the second derivative of $f(x) = \sqrt{1-x}$.

(b) If g is a twice differentiable function, find the second derivative of $f(x) = g(x^2 + 1)$ in terms of g, g', g''.

6. Calculate the derivatives of the following functions. Each derivative is worth 5 points. Do not simplify your answers.

(a) If
$$F(x) = (x^3 - 5)^3$$
 then $F'(x) =$ _____

(b) If
$$F(x) = \sqrt{x - 4x^5}$$
 then $F'(x) =$ _____

(c) If
$$F(x) = \sin(\cos(\sin x))$$
 then $F'(x) =$ _____

(d) If
$$F(x) = \sin\left(\frac{1-x}{1+x}\right)$$
 then $F'(x) =$ ______

- 7. Each problem is worth 5 points.
 - (a) Find the equation of the tangent line to the curve $y^3 2xy + x^3 = 0$ at the point P(1,1).

(b) Express the derivative of y with respect to x in terms of x and y if $y^2 = \frac{x-1}{y-1}$.

- **8.** Each part is worth 4 points.
 - (a) Find the linearization L(x) of $f(x) = \sqrt[3]{x}$ at a = 27.

(b) Estimate the value of $\sqrt[3]{28}$. **Note:** A calculator solution is not an acceptable answer.

