Newton's Approximation of Pi

By: Sarah Riffe and Jen Watt

A

Outline

- Who was I saac Newton? What was his life like?
- What is the history of Pi?
- What was Newton's approximation of Pi?

History of I saac Newton

- 17th Century
 - Shift of progress in math
 - "relative freedom" of thought in Northern Europe

The Life of Newton

- Born: Christmas day 1642
- Died: 1727
- Raised by grandmother

Newton's Education

- 1661
- Began at Trinity College of Cambridge University
- 1660
- Charles II became King of England
- Suspicion and hostility towards
 - Cambridge

Newton, the young man

- "single minded"
 - Would not eat or sleep over an intriguing problem
- Puritan
 - Book of sins

Newton's Studies

• 1664

- Promoted to scholar at Trinity

- 1665-1666
 - Plague
 - Newton's most productive years

Newton's Discoveries

- 1665
 - Newton's "generalized binomial theorem"
 - led to method of fluxions
- 1666
 - Inverse method of fluxions
 - Began observations of rotation of
 - planets

Newton's Accomplishments

- 1668
 - Finished master's degree
 - Elected fellow of Trinity College
- 1669
 - Appointed Lucasian chair of mathematics

Newton's Accomplishments

- @ 1704
 - Elected President of the Royal Society
- 1705
 - Knighted by Queen Anne
- 1727
 - Buried in Westminster Abbey

The History of Pi

 Archimedes' classical method

 Using Polygons
 with inscribed
 And
 Circumscribed
 circles

circumscribed inscribed octagon octagon circle of diameter] and circumference π

- Found Pi between 223/71 and 22/7
 - =3.14

Important Dates of Pi

- 150 AD
 - First notable value for Pi by Caludius
 Ptolemy of Alexandria
 - Pi = 3 8'30"
 - = 377/120
 - = 3.1416

- 480 AD
 - TSU Ch'ung-chih from China gave rational approximation
 - Pi = 355/113
 - = 3.1415929

= 3.1416

- 530 AD
 - Hindu mathematician Aryabhata
 - Pi = 62,832/20,000

- 1429 AD
 - Al- Kashi
 - Astronomer approximated Pi to 16 decimal places
- 1579 AD
 - Francois Viete from France
 - Approximated Pi to 9 decimal places

- 1585 AD
 - Adriaen Anthoniszoon
 - Rediscovered Chinese ratio 355/113
 - 377/120> Pi > 333/106
- 1593 AD
 - Adriaen Von Roomen
 - Found Pi to the 15th decimal place by classical method using polygons with
 - 2^30th sides

- 1610 AD
 - Ludolph Van Ceulen of the Netherlands
 - Pi ~ 30 decimal places
 - Used polygons with 2^{62} sides
- 1621 AD
 - Willebrord Snell (Dutch)
 - Able to get Ceulen's 35th decimal place by only 2^{30} side polygon

• 1630 AD

- Grienberger
- Pi to 39 decimal places
- 1671
 - James Gregory from Scotland obtained infinite series

arctan x = x −
$$\frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + ...(-1 \le x \le 1)$$

- 1699 AD
 - Abraham Sharp
 - Pi ~ 71 decimal places
- 1706 AD
 - John Machin
 - Pi ~ 100th decimal place

- 1719 AD
 - De Lagny of France
 - Pi ~ 112 decimal places
- 1737 AD
 - William Jones from England
 - First to use Pi symbol for ratio of the circumference to the diameter

- 1767 AD
 - Johan Heinrich Lambert
 - Showed Pi is irrational
- 1794 AD
 - Adrien-Marie Legendre
 - Showed Pi-squared is irrational

- 1841 AD
 - William Rutherford
 - Calculated Pi to 208 places
- 1844 AD
 - Zacharis Dase found Pi correct to 200 places using Gregory Series

$$\frac{p}{2} = \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{5}\right) + \arctan\left(\frac{1}{8}\right)$$

- 1853 AD
 - Rutherford returns
 - Finds Pi to 400 decimal places
- 1873 AD
 - William Shanks from England
 - Pi to 707 decimal places
- 1882 AD
 - F. Lindeman
 - Shows Pi is transcendental

- 1948
 - D.F. Ferguson of England
 - Finds errors with Shanks value of Pi starting with 528th decimal place
 - Gives correct value to the 710th place
 - J.W. Wrench Jr.
 - Works with Ferguson to find 808th place for Pi Used Machin's formula

$$\frac{p}{4} = 3\arctan\left(\frac{1}{4}\right) + \arctan\left(\frac{1}{20}\right) + \arctan\left(\frac{1}{1985}\right)$$

- 1949 AD
 - Electronic computer The ENIAC
 - Compute Pi to the 2,037th decimal places
- 1959 AD
 - Fancois Genuys from Paris
 - Compute Pi to 16,167 decimal places with I BM 704

- 1961 AD
 - Wrench and Shanks of Washington D.C.
 - compute Pi to 100,265th
 - using IBM 7090
- 1966 AD
 - M. Jean Guilloud and co-workers
 - attained approximation for Pi
 to 250,000 decimal places on a STRETCH computer

- 1967 AD
 - M. Jean Guilloud and coworkers
 - found Pi to the 500,000 places on a CDC 6600
- 1973
 - M. Jean Guilloud and coworkers found Pi to
 1 millionth place on CDC 7600
- 1981 AD
 - Kazunori Miyoshi and Kazuhika Nakayma of the University of Tsukuba
 - Pi to 2 million and 38 decimal places in 137.30 hours on a FACOM M-200 computer

- 1986 AD
 - DH Bailey of NASA Ames Research Center ran a Cray-2 supercomputer for 28 hours
 - Got Pi to 29,360,000 decimal places
 - Yasamasa Kanada from University of Tokyo
 - Used NEC SX-2 super computer to compute Pi to 134,217,700 decimal places

Purpose to Continue to Compute Pi

- See if digits of Pi start to repeat
 Possible normalcy of Pi
- Valuable in computer science for designing programs

Information Already known

$$\left(x - \frac{1}{2}\right)^2 + \left(y - 0\right)^2 = \frac{1}{2}^2$$

or

 $x^{2} - x + \frac{1}{4} + y^{2} = \frac{1}{4}$

 $Area(sector) = \frac{1}{3}Area(semicircle)$ $=\frac{1}{3}\left(\frac{1}{2}\cdot\boldsymbol{p}\cdot\boldsymbol{r}^{2}\right)$ $=\frac{1}{3}\left[\frac{1}{2}\boldsymbol{p}\left(\frac{1}{2}\right)^{2}\right]$ $=\frac{\boldsymbol{p}}{24}$

$$Area(ABD) = Area(\sec tor) - Area(\Delta DBC)$$
$$= \frac{p}{24} - \frac{\sqrt{3}}{32}$$

♦

$$\mathbf{p} \approx 24 \left(.07677310678 + \frac{\sqrt{3}}{32} \right) = 3.141592668...$$

