Approximation of $\mathcal{P i}_{i}$
By: Sarah Riffe
and I en Watt

Outline

- Who was Isaac Newton? What was fis life like?
- What is the fistory of $\mathcal{P i}$?
- What was $\mathcal{N e w t o n ' s ~ a p p r o x i m a t i o n ~ o f ~}$ $\mathcal{P i}^{\text {? }}$

\mathcal{H} istory of Isaac $\mathcal{N e}$ wton

- $17^{\text {th }}$ Century
-Skift of progress in math
- "relative freedom" of thought in Northern Europe

The Life of $\mathfrak{N e w t o n}$

- Born: Christmas day 1642
- Died: 1727
- Raised by grandmother

\mathcal{N} ewton's Education

- 1661
- Began at Irinity College of

Cambridge University

- 1660
- Charles I I became King of England
- Suspicion and fostility towards

Cambridge

Newton, the young man

- "single minded"
- Would not eat or sle ep over an intriguing problem
- Puritan
- Book of sins

$\mathcal{N e}$ wton's S tudies

- 1664
- Promoted to scfiolar at Trinity
-1665-1666
- Plague
- Newton's most productive years

$\mathcal{N e}$ wton's $\operatorname{Discoveries~}$

- 1665
- Newton's "generalized binomial the orem"
- led to method of fluxions
- 1666
- Inverse method of fluxions
- Began observations of rotation of
planets

$\mathcal{N e w t o n ' s}$ Accomplisfments

- 1668
- Finisfied master's degree
- Elected fellow of Trinity College
- 1669
- Appointed Lucasianchair of mathematics

$\mathcal{N e} w t$ on's
 Accomplisfiments

- @ 1704
- Elected President of the Royal Society
- 1705
- Knighted by Queen Anne
- 1727
- Buried in Westminster Abbey

The History of $\mathcal{P i}_{i}$

- Arcfimedes classicalmethod
- Using Polygons with inscribed And

Circumscribed circles

circumscribed octagon
circle of diameter 1 and
circumference π
3.

1415926535897932384626433832795028841971693993751058209749445923 0781640628620899862803482534211706798214808651328230664709384460 $955058223174502841027019885211055596446229+8954$ 93038196 84756482337867831652712019091456485 66923460 (911 1326 1339360726024914 1306 88700660631558817 $4881520920062540 \quad 536436^{20000006001334} 30548820466521384$ 1469519415116 480744623799 065664308602 $7523846748 \mathrm{~V} \quad 6940$ $736371787 \quad 0901$ 995611212 2 $\quad 086403$ 2 $\quad 813629774771309960518707211349995998$ 3729780499510997317328160963185950244594553469083026425223082533 4468503526193118817101000313783875288658753320838142061717766914 7303598253490428755468731159562863882353787593751957781857780532 1712268066130019278766111959092164201989380952572010654538632788
-Found Pi betwe en 223/71 and 22/7
$\bullet=3.14$

Important $\mathcal{D a t e s}$ of $\mathcal{P i}$

- $150 \mathcal{A D}$
- First notable value for Pi by Caludius Ptolemy of Alexandria
- $P_{i}=3830$ "
$=377 / 120$
$=3.1416$
- $480 \mathcal{A D}$
- TS UlChung-cfif from Cfina gave rational approximation
$-\mathcal{P} i=355 / 113$
$=3.1415929$
- $530 \mathcal{A D}$
- Hindu mathematician Aryabhata
$-P i=62,832 / 20,000$

$$
\begin{aligned}
& 1150 \mathcal{A D} \\
& -\mathcal{B f a s k a r a} \\
& -\mathcal{P i}=3,927 / 1250 \\
& \operatorname{Pi}=22 / 7 \\
& \operatorname{Pi}=754 / 240 \\
& \quad=3.1416
\end{aligned}
$$

- $1429 \mathcal{A D}$
- Al- Kasfi
- Astronomer approximated Pi to 16 decimal places
- $1579 \mathcal{A D}$
- Francois Viete from France
- Approximated Pi to 9 decimal places

- $1585 \mathcal{A D}$
- Adrian $\mathcal{A n t h o n i s z o o n ~}$
- Rediscovered Chinese ratio 355/113
$-377 / 120>P i>333 / 106$
- $1593 \mathcal{A D}$
- Adrian Yon Roomen
- Found Pi to the $15^{\text {th }}$ decimal place by classical method using polygons with

$$
2^{\wedge} 30^{t \hbar} \text { sides }
$$

- $1610 \mathcal{A D}$
- Ludolph Van Ceulen of the Netherlands
- Pi ~ 30 decimal places
- Ulsed polygons with 2^{62} sides
- $1621 \mathcal{A D}$
- Wille brord S nell (Dutch)
- Able to get Ceulen's $35^{\text {th }}$ decimal place by only 2^{30} side polygon
- $1630 \mathcal{A D}$
- Grienberger
- Pi to 39 decimal places
- 1671
- Iames Gregory from S cotland obtained infinite series
$\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots(-1 \leq x \leq 1)$

- $1699 \mathcal{A D}$
- Abrafiam Sharp
- Pi~ 71 decimal places
- $1706 \mathcal{A D}$
- Iofn Mackin
$-\mathcal{P i} \sim 100^{\text {th }}$ decimal place

- $1719 \mathcal{A D}$
- De Lagny of France
- Pi ~ 112 decimal places
- $1737 \mathcal{A D}$
- William gones from England
- First to use Pi symbolfor ratio of the circumference to the diameter
- $1767 \mathcal{A D}$
- I ofan Heinricf Lambert
- Showed P i is irrational
- $1794 \mathcal{A D}$
- Adrien-Marie Legendre
-Showed Pi-squared is irrational

- $1841 \mathcal{A D}$
- William Rutherford
- Calculated Pi to 208 places
- $1844 \mathcal{A D}$
- Zacharis Dase found Pi correct to 200 places using Gregory Series

- $1853 \mathcal{A D}$
- Rutherford returns
- Finds Pi to 400 decimal places
- $1873 \mathcal{A D}$
- William Shanks from England
- Pi to 707 decimal places
- $1882 \mathcal{A D}$
- F. Lindeman
-S hows $\mathcal{P i}_{\text {i }}$ transcendental
- 1948
- D.F. Fergus on of England
- Finds errors with Shanks value of Pi starting with $528^{\text {th }}$ decimal place
- Gives correct value to the $710^{\text {th }}$ place
- g.W.Wrench gr.
- Works with $\mathcal{F e}$ rguson to find $808^{\text {th }}$ place for $\mathcal{P i}$ Uled Machin's formula

$$
\frac{\pi}{4}=3 \arctan \left(\frac{1}{4}\right)+\arctan \left(\frac{1}{20}\right)+\arctan \left(\frac{1}{1985}\right)
$$

- $1949 \mathcal{A D}$
- Electronic computer-The ENI AC
- Compute Pi to the 2,037 th decimal places
- $1959 \mathcal{A D}$
- Fancois Genuys from Paris
- Compute Pi to 16,167 decimal places with

IBM 704

- 1961 AD
- Wrench and Shanks of Wasfington D.C.
- compute Pi to 100,265th
using $I \mathcal{B M} 7090$
- $1966 \mathcal{A D}$
- M. I ean Guilloud and co-workers
- attained approximation for $\mathcal{P i}$
to 250,000 decimal places on a STRETCH computer
- $1967 \mathcal{A D}$
- M. Ie an Guilloud and coworkers
- found Pi to the 500,000 places on a CDC 6600
- 1973
- M. Iean Guilloud and coworkers found \mathcal{P}_{i} to 1 millionth place on CDC 7600
- $1981 \mathcal{A D}$
- Kazunori Miyosfi and Kazufika Nakayma of the University of Tsukuba
- Pi to 2 million and 38 decimal places in 137.30 fours on a T) $\mathcal{F A C O M}$ M-200 computer
- $1986 \mathcal{A D}$
- $\mathcal{D H} \mathcal{B a i l e y}$ of $\mathcal{N} \mathcal{A S} \mathcal{A}$ Ames Research Center ran a Cray-2 supercomputer for 28 hours
- Got Pi to 29,360,000 decimalplaces
- Yasamasa Kanada from University of Tokyo
- Ulsed $\mathfrak{N E E}$ SX-2 super computer to compute $\mathcal{P i}_{i}$ to $134,217,700$ decimal places

Purpose to Continue to

Compute $\mathcal{P i}$

- See if digits of Pistart to repeat
- Possible normalcy of Pi
- Valuable in computer science for designing programs

$$
\begin{gathered}
\text { Information Already } \\
\text { Known } \\
\left(x-\frac{1}{2}\right)^{2}+(y-0)^{2}=\frac{1}{2}^{2}
\end{gathered}
$$

or

Solve for " y "

$$
\begin{aligned}
& y=x^{1 / 2}(1-x)^{1 / 2} \\
& =x^{1 / 2}\left(1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}-\frac{5}{128} x^{4}-\frac{7}{256} x^{5}-\ldots\right) \\
& =x^{1 / 2}-\frac{1}{2} x^{3 / 2}-\frac{1}{8} x^{5 / 2}-\frac{1}{16} x^{7 / 2}-\frac{5}{128} x^{9 / 2}-\frac{7}{256} x^{11 / 12}-\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area }(\mathcal{A B D}) \text { by fluxion } \\
& \frac{2}{3} x^{3 / 2}-\frac{1}{2}\left(\frac{2}{5} x^{5 / 2}\right)-\frac{1}{8}\left(\frac{2}{7} x^{7 / 2}\right)-\frac{1}{16}\left(\frac{2}{9} x^{9 / 2}\right)-\ldots \\
& =\frac{2}{3} x^{3 / 2}-\frac{1}{5} x^{5 / 2}-\frac{1}{28} x^{7 / 2}-\frac{1}{72} x^{9 / 2}-\frac{5}{704} x^{11 / 2}-\ldots
\end{aligned}
$$

$$
\begin{gathered}
\left(\frac{1}{4}\right)^{3 / 2}=\left(\sqrt{\frac{1}{4}}\right)^{3}=\frac{1}{8} \ldots-\left(\frac{1}{4}\right)^{5 / 2}=\left(\sqrt{\frac{1}{4}}\right)^{5}=\frac{1}{32}-\cdots \\
\frac{1}{12}-\frac{1}{160}-\frac{1}{3584}-\frac{5}{1441792} \cdots-\frac{429}{163208757248}=.07677310678 \\
\end{gathered}
$$

Area ($\mathcal{A B D}$) by geometry

$$
\overline{B D}=\sqrt{\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{4}\right)^{2}}=\sqrt{\frac{3}{16}}=\frac{\sqrt{3}}{4}
$$

$\operatorname{Area}(\triangle D B C)=\frac{1}{2}(\overline{B C}) x(\overline{B D})=\frac{1}{2}\left(\frac{1}{4}\right)\left(\frac{\sqrt{3}}{4}\right)=\frac{\sqrt{3}}{32}$

$$
\begin{aligned}
& \text { Area }(\sec \text { tor })=\frac{1}{3} \text { Area }(\text { semicircle }) \\
& =\frac{1}{3}\left(\frac{1}{2} \cdot \pi \cdot r^{2}\right) \\
& =\frac{1}{3}\left[\frac{1}{2} \pi\left(\frac{1}{2}\right)^{2}\right] \\
& =\frac{\pi}{24}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Area}(A B D)=\operatorname{Area}(\sec \operatorname{tor})-\operatorname{Area}(\triangle D B C) \\
& =\frac{\pi}{24}-\frac{\sqrt{3}}{32} \\
\pi \approx & 24\left(.07677310678+\frac{\sqrt{3}}{32}\right)=3.141592668 \ldots
\end{aligned}
$$

