THE LOCUS OF BRILL-NOETHER GENERAL GRAPHS IS NOT DENSE

DAVID JENSEN

Abstract

We provide an example of a trivalent, 3-connected graph G such that, for any choice of metric on G, the resulting metric graph is Brill-Noether special.

1. Introduction

We say that an algebraic curve C is Brill-Noether general if, for all positive integers r and d, the variety $W_{d}^{r}(C)$ parameterizing divisors of degree d and rank at least r has dimension equal to the Brill-Noether number $\rho=g-(r+1)(g-d+r)$. By the Brill-Noether Theorem GH80, the locus of Brill-Noether general curves is a dense open subset of M_{g}. The Baker-Norine theory of divisors on metric graphs gives us an analogous notion of BrillNoether general graphs Bak08, BN07. As in the classical case, the locus of Brill-Noether general graphs in the moduli space of tropical curves $M_{g}^{\text {trop }}$ is open LPP12, Len12] and non-empty CDPR12, but this does not imply that it is dense. Specifically, $M_{g}^{\text {trop }}$ is stratified by the sets $M_{G}^{\text {trop }}$ consisting of all metric graphs with the same underlying discrete graph G, and the question of which strata contain Brill-Noether general curves remains an open problem.

The top-dimensional strata of $\bar{M}_{g}^{\text {trop }}$ correspond to trivalent graphs, and it is a straightforward exercise to construct a trivalent graph G with the property that every metric graph $\Gamma \in M_{G}^{\text {trop }}$ is Brill-Noether special. For example, if G is the graph pictured in Figure 1, obtained by attaching a loop to each leaf of a tree, then every $\Gamma \in M_{G}^{\text {trop }}$ is hyperelliptic. Prior to this note, however, all known examples of such graphs contained bridges. This is a bit unsatisfying, as the length of the bridges does not affect either the Jacobian or the Brill-Noether theory of the graph, and for this reason it is customary to treat graphs without bridges as the proper analogues of algebraic curves (see, for example, [BN07, Remark 4.8]). More precisely, if G fails to be 2-connected, then the restriction of the tropical Torelli map to $M_{G}^{\text {trop }}$ has positive-dimensional fibers [CV10]. It is therefore more natural to ask for a 2 -connected or even 3-connected trivalent graph G such that every $\Gamma \in M_{G}^{\text {trop }}$ is Brill-Noether special. In this note we provide an example of such a graph.

Figure 1. A graph that is hyperelliptic for any choice of edge lengths
Our example is the Heawood graph, which is the Levi graph of the Fano plane. This graph, depicted in Figure 1, has 14 vertices, corresponding to the 7 points and 7 lines in the Fano plane, with an edge between two vertices if the corresponding point lies on the corresponding line. Our main result is the following.

Figure 2. The Heawood graph
Theorem 1.1. If G is the Heawood graph, then any metric graph $\Gamma \in M_{G}^{\text {trop }}$ possesses a divisor of degree 7 and rank 2. Since $g(G)=8$, every such metric graph Γ is Brill-Noether special.

The Fano plane is an example of a rank 3 matroid, and in [Car such matroids are studied in the context of the divisor lifting problem. More specifically, given a metric graph Γ and a divisor D on Γ, one can ask whether there exists an algebraic curve and a divisor on the curve of the same rank as D specializing to Γ and D respectively. Such a pair of a curve and a divisor is called a lifting of the pair (Γ, D). Among the results of [Car] is the fact that, if Γ is the Heawood graph with all edges of length one, and D is the divisor of degree 7 and rank 2 described in Theorem 1.1, then the pair (Γ, D) admits a lifting over a valued field K if and only if the characteristic of K is 2. One consequence of Theorem 1.1 is the following, which is valid in any characteristic.

Corollary 1.2. Let G be the Heawood graph and let $\Gamma \in M_{G}^{\text {trop }}$ have generic edge lengths. Then there exists a divisor D on Γ of degree 7 and rank 2 such that the pair (Γ, D) does not admit a lifting.

Acknowledgments. This paper was written during a conference on specialization of divisors from curves to graphs at Banff International Research Station. We would like to thank Matt Baker, Dustin Cartwright, Ethan Cotterill, Yoav Len and Sam Payne for helpful conversations. The author was supported in part by an AMS Simons Travel Grant.

2. The Example

Proposition 2.1. Let G be a graph, $B \subset V(G)$ a subset of the vertices of G, and $D_{B}=\sum_{v \in B} v$. If every cycle of G contains at least $r+1$ vertices in B, then for any metric graph $\Gamma \in M_{G}^{\text {trop }}$, we have $r_{\Gamma}\left(D_{B}\right) \geq r$.
Proof. We prove this by induction on r, the case $r=0$ being obvious. By assumption, if $r \geq 1$, then every cycle in G contains at least 2 vertices in B. It follows that every boundary point of every component of B has outdegree 1, and hence by Luo11, Theorem 3.16] B is a rank-determining set. From this we see that $r_{\Gamma}\left(D_{B}\right) \geq r$ if and only if $r_{\Gamma}\left(D_{B}-v\right) \geq r-1$ for every $v \in B$. By assumption, however, every cycle in G contains at least r vertices in $B \backslash\{v\}$, so by our inductive hypothesis, $r_{\Gamma}\left(D_{B}-v\right) \geq r-1$.

Recall that the girth of a graph is the minimum number of vertices in a cycle.

Corollary 2.2. Let G be a bipartite graph. Fix a 2-coloring of the vertices and let B denote the set of vertices of one color. Then, for any metric graph $\Gamma \in M_{G}^{\text {trop }}$, we have

$$
r_{\Gamma}\left(D_{B}\right) \geq \frac{1}{2} \operatorname{girth}(G)-1 .
$$

Remark 2.3. In general, the divisor D_{B} may have much larger rank than the bound given in Corollary 2.2. For example, given any trivalent graph G, we may construct a bipartite graph G^{\prime} by introducing a vertex in the middle of each edge of G. If B is the set of original vertices of the graph G, then D_{B} is the canonical divisor on G^{\prime}, which is known to have $\operatorname{rank} g(G)-1$. Since there exist graphs of arbitrarily high genus with girth 1 , we may construct divisors of the form D_{B} for which the bound is arbitrarily bad.

Proof of Theorem 1.1. The Heawood graph is a bipartite graph of girth 6, so by Corollary 2.2 the divisor D_{B} has rank at least 2 . To see that the rank is exactly 2 , choose any two vertices $v_{1} \neq v_{2} \in B$ and note that by Dhar's burning algorithm [Dha90], the divisor $D_{B}-v_{1}-v_{2}$ is v_{1}-reduced. (For an exposition of Dhar's algorithm for metric graphs, see [Luo11, Algorithm 2.5].)

Remark 2.4. Corollary 2.2 does not yield any other example of a graph G such that every metric graph $\Gamma \in M_{G}^{\text {trop }}$ is Brill-Noether special. Indeed, the Heawood graph is the only trivalent graph satisfying the inequality

$$
\frac{1}{4} \operatorname{girth}(G)^{2}>g(G)
$$

Specifically, if G is a trivalent graph of given girth, then we may obtain a lower bound on the number of vertices by performing a breadth first search starting from any vertex. This procedure yields the bound

$$
g(G) \geq 2^{\frac{1}{2} \operatorname{girth}(G)},
$$

so the inequality above is satisfied if and only if G has genus 8 and girth 6 .
Proof of Corollary 1.2. Let $\overline{B N}_{7}^{2, \text { an }}$ be the analytification of the the BrillNoether locus $\overline{B N}_{7}^{2}$ inside of $\bar{M}_{8}^{\text {an }}$. Since $\overline{B N}_{7}^{2}$ is 20-dimensional, the image of $\overline{B N}_{7}^{2, \text { an }}$ under the retraction $\bar{M}_{8}^{\text {an }} \rightarrow \bar{M}_{8}^{\text {trop }}$ has dimension at most 20 . If G is the Heawood graph, however, then $M_{G}^{\text {trop }}$ is 21-dimensional, so the general point $\Gamma \in M_{G}^{\text {trop }}$ is not contained in the image of $\overline{B N}_{7}^{2, \text { an }}$. It follows that if Γ is such a general point, and C is any curve such that the skeleton of $C^{\text {an }}$ is isometric to Γ, then C is Brill-Noether general, and hence every divisor D on C that specializes to D_{B} has rank less than 2 .

References

[Bak08] M. Baker. Specialization of linear systems from curves to graphs. Algebra Number Theory, 2(6):613-653, 2008.
[BN07] M. Baker and S. Norine. Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math., 215(2):766-788, 2007.
[Car] D. Cartwright. Lifting rank 2 tropical divisors.
[CDPR12] F. Cools, J. Draisma, S. Payne, and E. Robeva. A tropical proof of the BrillNoether theorem. Adv. Math., 230(2):759-776, 2012.
[CV10] L. Caporaso and F. Viviani. Torelli theorem for graphs and tropical curves. Duke Math. J., 153(1):129-171, 2010.
[Dha90] D. Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett., 64(14):1613-1616, 1990.
[GH80] P. Griffiths and J. Harris. On the variety of special linear systems on a general algebraic curve. Duke Math. J., 47(1):233-272, 1980.
[Len12] Y. Len. First steps in Brill-Noether theory of tropical curves. preprint, arXiv:1209.6309v1, 2012.
[LPP12] C.-M. Lim, S. Payne, and N. Potashnik. A note on Brill-Noether theory and rank-determining sets for metric graphs. Int. Math. Res. Not. IMRN, (23):54845504, 2012.
[Luo11] Y. Luo. Rank-determining sets of metric graphs. J. Combin. Theory Ser. A, 118:1775-1793, 2011.

Department of Mathematics, Yale University, PO Box 208283, New Haven, CT 06520

