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Abstract. We provide an example of a trivalent, 3-connected graph G
such that, for any choice of metric on G, the resulting metric graph is
Brill-Noether special.

1. Introduction

We say that an algebraic curve C is Brill-Noether general if, for all
positive integers r and d, the variety W r

d (C) parameterizing divisors of
degree d and rank at least r has dimension equal to the Brill-Noether number
ρ = g− (r+1)(g−d+r). By the Brill-Noether Theorem [GH80], the locus of
Brill-Noether general curves is a dense open subset of Mg. The Baker-Norine
theory of divisors on metric graphs gives us an analogous notion of Brill-
Noether general graphs [Bak08, BN07]. As in the classical case, the locus of

Brill-Noether general graphs in the moduli space of tropical curves M trop
g

is open [LPP12, Len12] and non-empty [CDPR12], but this does not imply

that it is dense. Specifically, M trop
g is stratified by the sets M trop

G consisting
of all metric graphs with the same underlying discrete graph G, and the
question of which strata contain Brill-Noether general curves remains an
open problem.

The top-dimensional strata of M
trop
g correspond to trivalent graphs, and

it is a straightforward exercise to construct a trivalent graph G with the
property that every metric graph Γ ∈ M trop

G is Brill-Noether special. For
example, if G is the graph pictured in Figure 1, obtained by attaching a
loop to each leaf of a tree, then every Γ ∈ M trop

G is hyperelliptic. Prior to
this note, however, all known examples of such graphs contained bridges.
This is a bit unsatisfying, as the length of the bridges does not affect either
the Jacobian or the Brill-Noether theory of the graph, and for this reason
it is customary to treat graphs without bridges as the proper analogues of
algebraic curves (see, for example, [BN07, Remark 4.8]). More precisely, if
G fails to be 2-connected, then the restriction of the tropical Torelli map to
M trop

G has positive-dimensional fibers [CV10]. It is therefore more natural to
ask for a 2-connected or even 3-connected trivalent graph G such that every
Γ ∈ M trop

G is Brill-Noether special. In this note we provide an example of
such a graph.
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Figure 1. A graph that is hyperelliptic for any choice of edge lengths

Our example is the Heawood graph, which is the Levi graph of the Fano
plane. This graph, depicted in Figure 1, has 14 vertices, corresponding to
the 7 points and 7 lines in the Fano plane, with an edge between two vertices
if the corresponding point lies on the corresponding line. Our main result is
the following.

Figure 2. The Heawood graph

Theorem 1.1. If G is the Heawood graph, then any metric graph Γ ∈M trop
G

possesses a divisor of degree 7 and rank 2. Since g(G) = 8, every such metric
graph Γ is Brill-Noether special.

The Fano plane is an example of a rank 3 matroid, and in [Car] such
matroids are studied in the context of the divisor lifting problem. More
specifically, given a metric graph Γ and a divisor D on Γ, one can ask whether
there exists an algebraic curve and a divisor on the curve of the same rank as
D specializing to Γ and D respectively. Such a pair of a curve and a divisor
is called a lifting of the pair (Γ, D). Among the results of [Car] is the fact
that, if Γ is the Heawood graph with all edges of length one, and D is the
divisor of degree 7 and rank 2 described in Theorem 1.1, then the pair (Γ, D)
admits a lifting over a valued field K if and only if the characteristic of K is
2. One consequence of Theorem 1.1 is the following, which is valid in any
characteristic.

Corollary 1.2. Let G be the Heawood graph and let Γ ∈M trop
G have generic

edge lengths. Then there exists a divisor D on Γ of degree 7 and rank 2 such
that the pair (Γ, D) does not admit a lifting.
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2. The Example

Proposition 2.1. Let G be a graph, B ⊂ V (G) a subset of the vertices of
G, and DB =

∑
v∈B v. If every cycle of G contains at least r + 1 vertices in

B, then for any metric graph Γ ∈M trop
G , we have rΓ(DB) ≥ r.

Proof. We prove this by induction on r, the case r = 0 being obvious. By
assumption, if r ≥ 1, then every cycle in G contains at least 2 vertices in B.
It follows that every boundary point of every component of B has outdegree
1, and hence by [Luo11, Theorem 3.16] B is a rank-determining set. From
this we see that rΓ(DB) ≥ r if and only if rΓ(DB − v) ≥ r − 1 for every
v ∈ B. By assumption, however, every cycle in G contains at least r vertices
in B r {v}, so by our inductive hypothesis, rΓ(DB − v) ≥ r − 1. �

Recall that the girth of a graph is the minimum number of vertices in a
cycle.

Corollary 2.2. Let G be a bipartite graph. Fix a 2-coloring of the vertices
and let B denote the set of vertices of one color. Then, for any metric graph
Γ ∈M trop

G , we have

rΓ(DB) ≥ 1

2
girth(G)− 1.

Remark 2.3. In general, the divisor DB may have much larger rank than
the bound given in Corollary 2.2. For example, given any trivalent graph G,
we may construct a bipartite graph G′ by introducing a vertex in the middle
of each edge of G. If B is the set of original vertices of the graph G, then DB

is the canonical divisor on G′, which is known to have rank g(G)− 1. Since
there exist graphs of arbitrarily high genus with girth 1, we may construct
divisors of the form DB for which the bound is arbitrarily bad.

Proof of Theorem 1.1. The Heawood graph is a bipartite graph of girth 6,
so by Corollary 2.2 the divisor DB has rank at least 2. To see that the rank
is exactly 2, choose any two vertices v1 6= v2 ∈ B and note that by Dhar’s
burning algorithm [Dha90], the divisor DB − v1 − v2 is v1-reduced. (For
an exposition of Dhar’s algorithm for metric graphs, see [Luo11, Algorithm
2.5].) �

Remark 2.4. Corollary 2.2 does not yield any other example of a graph G
such that every metric graph Γ ∈M trop

G is Brill-Noether special. Indeed, the
Heawood graph is the only trivalent graph satisfying the inequality

1

4
girth(G)2 > g(G).
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Specifically, if G is a trivalent graph of given girth, then we may obtain a
lower bound on the number of vertices by performing a breadth first search
starting from any vertex. This procedure yields the bound

g(G) ≥ 2
1
2

girth(G),

so the inequality above is satisfied if and only if G has genus 8 and girth 6.

Proof of Corollary 1.2. Let BN
2,an
7 be the analytification of the the Brill-

Noether locus BN
2
7 inside of M

an
8 . Since BN

2
7 is 20-dimensional, the image

of BN
2,an
7 under the retraction M

an
8 → M

trop
8 has dimension at most 20.

If G is the Heawood graph, however, then M trop
G is 21-dimensional, so the

general point Γ ∈M trop
G is not contained in the image of BN

2,an
7 . It follows

that if Γ is such a general point, and C is any curve such that the skeleton
of Can is isometric to Γ, then C is Brill-Noether general, and hence every
divisor D on C that specializes to DB has rank less than 2. �
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