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Veronese Quotient Models of M0,n

and Conformal Blocks

Angela Gibney, David Jensen,
Han-Bom Moon, & David Swinarski

Introduction

The moduli space of Deligne–Mumford stable n-pointed rational curves, M0,n, is
a natural compactification of the moduli space of smooth pointed genus 0 curves
and has figured prominently in the literature. A central motivating question is to
describe other compactifications of M0,n that receive morphisms from M0,n. From
the perspective of Mori theory, this is tantamount to describing semi-ample divi-
sors on M0,n. This work is concerned with two recent constructions that each yield
an abundance of such semi-ample divisors on M0,n and with the relationship be-
tween them. The first construction comes from geometric invariant theory (GIT)
and the second from conformal field theory.

There are birational models of M0,n obtained via GIT that are moduli spaces of
pointed rational normal curves of fixed degree d, where the curves and the marked
points are weighted by nonnegative rational numbers (γ,A) = (γ, (a1, . . . , an))
[Gi; GiJM; GiSi]. These Veronese quotients V d

γ,A are remarkable in that they spe-
cialize to nearly every known compactification of M0,n [GiJM]. There are bira-
tional morphisms from M0,n to these GIT quotients, and their natural polarization
can be pulled back along this morphism to yield semi-ample divisors Dγ,A on M0,n.

A second recent development in the birational geometry of M0,n involves divi-
sors that arise from conformal field theory. These divisors are first Chern classes
of vector bundles of conformal blocks V(g, 
, �λ) on the moduli stack Mg,n.

Constructed using the representation theory of affine Lie algebras [Fa; TUY],
these vector bundles depend on the choice of a simple Lie algebra g, a nonneg-
ative integer 
, and an n-tuple �λ = (λ1, . . . , λn) of dominant integral weights in
the Weyl alcove for g of level 
. For the definition of vector bundles of conformal
blocks and related representation-theoretic notations, see Section 4.1. Vector bun-
dles of conformal blocks are globally generated when g = 0 [Fa, Lemma 2.5],
and their first Chern classes c1(V(g, 
, �λ)) = D(g, 
, �λ), the conformal block di-
visors, are semi-ample.

For γ = 0, it was shown in [Gi; GiG] that the divisors D0,A coincide with con-
formal block divisors for slr and level 1. Our guiding philosophy is that there is a
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general correspondence betweenVeronese quotients and conformal block divisors.
After first giving background information about Veronese quotients in Section 1,
in support of this we:

2. derive intersection numbers for all Dγ,A with curves on M0,n (Theorem 2.1);
3. give a new modular interpretation for a particular family of Veronese quotients

(Section 3);
4. show that the models described in Section 3 are given by conformal block

divisors (Theorem 4.6);
5. provide several conjectures (and supporting evidence) generalizing these results

(Section 5).

In order to further motivate and put this work in context, we next say a bit more
about items 2–5.

Section 2. The Classes of All Veronese Quotient Divisors Dγ,A. For
each allowable (γ,A), there exists a morphism ϕγ,A : M0,n→ V d

γ,A. In Section 2
we study the divisors Dγ,A = ϕ∗γ,A(Lγ,A), where Lγ,A is the canonical ample
polarization on V d

γ,A. In Theorem 2.1 we give a formula for the intersection of
Dγ,A with F-curves (Definition 1.5), a collection of curves that span the vector
space of numerical equivalence classes of 1-cycles on M0,n. Theorem 2.1 is a vast
generalization of formulas that have appeared for d ∈ {1, 2} and for γ = 0 (see
[AS; Gi; GiG; GiSi]) and captures a great deal of information about the nef cone
Nef(M0,n). For example, since adjacent chambers in the GIT cone correspond
to adjacent faces of the nef cone, by combining Theorem 2.1 with the results of
[GiJM] we could describe many faces of Nef(M0,n). Moreover, Theorem 2.1 is
equivalent to giving the class of Dγ,A in the Néron–Severi space. To illustrate
this claim, we give the classes of the conformal block divisors with Sn-invariant
weights (Corollary 2.12) and the particularly simple formula for the divisors that
give rise to the maps to the Veronese quotients V g+1−



−1

+1,

(
1

+1

)2g+2 (Example 2.13).

Section 3. A New Modular Interpretation for a Particular Family
of Veronese Quotients. Much work has focused on alternative compactifi-
cations of M0,n [B; Fe; Gi; GiJM; GiSi; Ha; Ka1; Ka2; LMa; Si; Sm]. As
shown in [GiJM], every choice of allowable weight data for Veronese quotients
(Definition 1.1) yields such a compactification and nearly every previously known
compactification arises as such a Veronese quotient. In Section 3, we study the
particular Veronese quotients V g+1−



−1

+1,

(
1

+1

)2g+2 for 1≤ 
 ≤ g. In Theorem 3.5 we pro-

vide a new modular interpretation for these spaces and note that, prior to [GiJM],
this moduli space had not appeared in the literature (see Remark 3.1). Our main
application is to show that the nontrivial conformal block divisors D(sl2, 
,ω2g+2

1 )

are pullbacks of ample classes from Veronese quotients (Theorem 4.6). For this,
we prove several results concerning morphisms between these Veronese quotients
(see Corollary 3.7 and Proposition 3.8).

Section 4. A Particular Family of Conformal Block Divisors. In [Gi;
GiG] it was shown that the divisors D0,A coincide with conformal block divisors



Veronese Quotient Models of M0,n and Conformal Blocks 723

of slr and level 1, and in [AGS] it is shown that the divisors D(sl2, 
,ω2g+2
1 ) and

D
−1

+1,

(
1

+1

)2g+2 are proportional for the two special cases 
 = 1 and g. In [AGS] the

authors ask whether there is a more general correspondence between D(sl2, 
,ωn
1 )

and Veronese quotient divisors. Theorem 4.6 gives a complete, affirmative answer
to their question (cf. Remark 4.7). One of the main insights in this work is that,
while not proportional for the remaining levels 
 ∈ {2, . . . , g − 1}, the divisors
D(sl2, 
,ω2g+2

1 ) and D
−1

+1,

(
1

+1

)2g+2 lie on the same face of the nef cone of M0,n.

In other words, the two semi-ample divisors define maps to isomorphic birational
models of M0,n. The corresponding birational models are precisely the spaces de-
scribed in Section 3.

Section 5. Generalizations. Evidence suggests that slr conformal block di-
visors with nonzero weights give rise to compactifications of M0,n and that these
compactifications coincide withVeronese quotients. This is certainly true for 
 = 1
and for the family of higher-level sl2 divisors considered in this paper as well as
for a large number of cases found using [S], software written for Macaulay 2 by
D. Swinarski. In Section 5.1 we provide evidence in support of these ideas in the
sl2 cases. In Section 5.2 we describe consequences of and evidence for Conjec-
ture 5.6, which asserts that conformal block divisors (with strictly positive weights)
separate points on M0,n.

Acknowledgments. We would like to thank Valery Alexeev, Maksym Fed-
orchuk, Noah Giansiracusa, Young-Hoon Kiem, Jason Starr, and Michael Thad-
deus for many helpful and inspiring discussions. We would also like to thank the
referee for many suggestions concerning an earlier draft of this paper.

1. Background on Veronese Quotients

We begin by reviewing general facts about Veronese quotients, including a descrip-
tion of them as moduli spaces of weighted pointed (generalized) Veronese curves
(Section 1.1) and the morphisms ϕγ,A : M0,n→ V d

γ,A (Section 1.2), from [GiJM].

1.1. The Spaces V d
γ,A

Following [GiJM], we write Chow(1, d, P d) for the irreducible component of the
Chow variety parameterizing curves of degree d in P d and their limit cycles, and
we consider the incidence correspondence

Ud,n := {(X,p1, . . . ,pn)∈Chow(1, d, P d)× (P d)n : pi ∈X ∀i}.
There is a natural action of SL(d+1) onUd,n, and one can form the GIT quotients
Ud,n //L SL(d + 1), where L is an SL(d + 1)-linearized ample line bundle. The
Chow variety and each copy of P d have a tautological ample line bundle OChow(1)
and OP d (1), respectively. By taking external tensor products of them, for each
sequence of positive rational numbers (γ, (a1, . . . , an)) we obtain a Q-linearized
ample line bundle L = O(γ )⊗O(a1)⊗ · · · ⊗O(an).
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Definition 1.1. We say that a linearization L is allowable if it is an element of
the set �0, where

�0 = {
(γ,A) = (γ, (a1, . . . , an))∈Q

n+1
≥0 :

γ < 1, 0 < ai < 1, and (d − 1)γ +∑
i ai = d + 1

}
.

If a1 = · · · = an = a, then we write an for A = (a1, . . . , an).
Let

V d
γ,A := Ud,n //γ,A SL(d + 1).

We call GIT quotients of this form Veronese quotients because they are quotients
of a space parameterizing pointed Veronese curves.

Given (X,p1, . . . ,pn) ∈ Ud,n, we may think of a choice L ∈�0 as an assignment
of a rational weight γ to the curve X and another weight ai to each of the marked
points pi. The conditions γ < 1 and 0 < ai < 1 for all i imply that the quo-
tient Ud,n //γ,A SL(d + 1) is a compactification of M0,n [GiJM, Prop. 2.10]. As
reflected in Lemma 1.2 to follow, the quotients have a modular interpretation pa-
rameterizing pointed degenerations of Veronese curves.

By taking d = 1 and γ = 0, one obtains the GIT quotients (P1)n //A SL(2)with
various weight data A. This quotient, which appears in [MuFoK, Chap. 3] under
the heading “An Elementary Example”, has been studied by many authors. It was
generalized first to d = 2 by Simpson in [Si] and later by Giansiracusa and Simp-
son in [GiSi]; it was then generalized for arbitrary d and γ = 0 by Giansiracusa
in [Gi]. More generally, the quotients for arbitrary d and γ ≥ 0 are defined and
studied by Giansiracusa, Jensen, and Moon in [GiJM].

The semistable points of Ud,n with respect to the linearization (γ,A) have the
following nice geometric properties.

Lemma 1.2 [GiJM, Cor. 2.4, Prop. 2.5, Cor. 2.6, Cor. 2.7]. For an allowable
choice (γ,A) as in Definition 1.1, a semistable point (X,p1, . . . ,pn) of Ud,n has
the following properties.

(i) X is an arithmetic genus 0 curve having at worst multinodal singularities.
(ii) Given a subset J ⊂ {1, . . . , n}, the marked points {pj : j ∈ J } can coincide

at a point of multiplicity m on X provided

(m− 1)γ +
∑
j∈J

aj ≤ 1.

In particular, a collection of marked points can coincide at a smooth point of
X as long as their total weight is at most 1. Also, a semistable curve cannot
have a singularity of multiplicity m unless γ ≤ 1/(m− 1).

(iii) X is nondegenerate; that is, it is not contained in a hyperplane.

1.2. The Morphisms ϕγ,A : M0,n→ V d
γ,A

In [GiJM] the authors prove the existence and several properties of birational mor-
phisms from M0,n to Veronese quotients.
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Proposition 1.3 [GiJM, Thm. 1.2, Prop. 4.7]. For an allowable choice (γ,A),
there exists a regular birational map ϕγ,A : M0,n → V d

γ,A preserving the interior
M0,n. Moreover, ϕγ,A factors through the contraction maps ρA to Hassett’s mod-
uli spaces M0,A:

M0,n

ρA

��

ϕγ,A

����
��

��
��

M0,A

φγ
�� V d

γ,A.

By the definition of the projective GIT quotient, there is a natural choice of an
ample line bundle on each GIT quotient. By pulling it back to M0,n, we obtain a
semi-ample divisor.

Definition 1.4. Let L = (γ,A) be an allowable linearization on Ud,n, and let
L̄ = L//L SL(d + 1) be the natural Q-ample line bundle on V d

γ,A. Then Dγ,A is

defined as the semi-ample line bundle ϕ∗γ,A(L̄).

Next, following [Ha] and [GiJM], we describe the F-curves contracted by ϕγ,A
and ρA. Toward this end we first define F-curves, which together span the vector
space N1(M0,n) of numerical equivalence classes of 1-cycles on M0,n.

Definition 1.5. Let A1 � A2 � A3 � A4 = [n] = {1, . . . , n} be a partition into
nonempty subsets, and put ni = |Ai |. There is an embedding

fA1,A2,A3,A4 : M0,4 → M0,n

given by attaching four legs L(Ai) to (X, (p1, . . . ,p4)) ∈ M0,4 at the marked
points. More specifically, to each pi we attach a stable (ni + 1)-pointed fixed ra-
tional curve L(Ai) = (Xi, (pi1, . . . ,pini ,p

i
a)) by identifying pia and pi; if ni = 1

for some i, we just keep pi as is. The image is a curve in M0,n whose equivalence
class is the F-curve denoted F(A1,A2,A3,A4). Each member of the F-curve con-
sists of a (varying) spine and four (fixed) legs.

In many parts of this paper we will focus on symmetric divisors and F-curves,
in which case the equivalence class is determined by the number of marked points
on each leg. We shall write Fn1,n2,n3,n4 for any F-curve class F(A1,A2,A3,A4)

with |Ai | = ni.

The F-curves F(A1,A2,A3,A4) contracted by the Hassett morphism ρA are
precisely those for which one of the legs, say L(Ai), has weight

∑
j∈Ai aj ≥∑

j∈[n] aj − 1. We can always order the cells of the partition so that A4 is the
heaviest—that is,

∑
j∈A4

aj ≥ ∑
j∈Ai aj for all i. Because the morphism ϕγ,A

factors through ρA, these curves are also contracted by ϕγ,A. This morphism may
contract additional F-curves as well, which we describe here.

As proved in [GiJM], the map ϕγ,A contracts those curves F(A1,A2,A3,A4)

for which the sum of the degrees of the four legs is equal to d. We next define
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two functions φ and σ that are useful for computing the degree of the legs of an
F-curve.

Definition 1.6 [GiJM, Sec. 3.1]. Consider the function φ : 2[n] × �0 → Q

given by

φ(J, γ,A) = aJ − 1

1− γ , where aJ =
∑
j∈J

aj for J ∈ 2[n].

For a fixed allowable linearization (γ,A) = (γ, (a1, . . . , an)) (cf. Definition 1.1),
let

σ(J ) =



�φ(J, γ,A)� if 1 < aJ < a[n] − 1,

0 if aJ < 1,

d if aJ > a[n] − 1.

Finally, for (X,p1, . . . ,pn) ∈ Ud,n and E ⊂ X a subcurve, define σ(E) =
σ({j ∈ [n] | pj ∈E}).
Proposition 1.7 [GiJM, Prop. 3.5]. For an allowable choice of (γ,A), suppose
that φ(J, γ,A) /∈Z for any nonempty J ⊂ [n]. IfX is a GIT-semistable curve and
E ⊂ X is a tail (a subcurve such that E ∩ X − E is one point), then deg(E) =
σ(E).

Corollary 1.8 [GiJM, Cor. 3.7]. Suppose that φ(J, γ,A) /∈ Z for any ∅ �=
J ⊂ [n], and let E ⊆ X be a connected subcurve of (X,p1, . . . ,pn)∈U ss

d,n. Then

deg(E) = d −
∑

σ(Y ),

where the sum is over all connected components Y of X\E.
Given an F-curveF(A1,A2,A3,A4) as described perviously, Proposition1.7 states
that deg(L(Ai)) = σ(Ai) if φ(Ai, γ,A) is not an integer. It follows that the de-
gree of the spine is 0, and hence that the F-curve is contracted, if and only if∑4

i=1 σ(Ai) = d.

Remark 1.9. When U ss
d,n has a strictly semistable point, it is possible that

φ(Ai, γ,A)∈Z. If φ(Ai, γ,A) = k is an integer then deg(L(Ai)) may be either k
or k+1. In this case, both curves are identified in the GIT quotient and it suffices
to consider the case where the legs have the maximum possible total degree.

2. The Veronese Quotient Divisors Dγ,A

The Veronese quotient divisors Dγ,A are semi-ample divisors that give rise to mor-
phisms from M0,n to the Veronese quotients V d

γ,A. One of the main results of this
paper is to give the combinatorial tools necessary to study these divisors as ele-
ments of the cone of nef divisors on M0,n.

In Theorem 2.1, we give a formula for the intersection of the Dγ,A (as given in
Definition 1.4) with F-curves on M0,n (as described in Definition 1.5). As a first
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application of Theorem 2.1, in Section 2.5 we give a simple formula for the in-
tersection of the particular divisors D
−1


+1,
(

1

+1

)2g+2 with a basis of F-curves. As a

second application of Theorem 2.1, in Corollary 2.12 we specify the class of Dγ,A

when A is Sn-invariant. We have already described (at the end of Section 1) a
criterion for determining when these numbers are 0, but computing them in the
nonzero case is substantially more complicated.

We first state Theorem 2.1 and Corollary 2.2; the latter exhibits the intersection
numbers in a particular case. Before proving Theorem 2.1, in Section 2.1 we give
an overview of our approach.

Notation. Let [n] = A1�A2�A3�A4 be a partition and let F(A1,A2,A3,A4)

be the corresponding F-curve (cf. Definition 1.5). Recall that σ(Ai) is the degree
of the leg L(Ai) (Definition 1.6). In this section, we establish the following ex-
plicit formula for the intersection of Dγ,A and F(A1,A2,A3,A4).

Theorem 2.1. Suppose we have an allowable linearization (γ,A) with d ≥ 2
and also an F-curve F(A1,A2,A3,A4). Then

F(A1,A2,A3,A4) ·Dγ,A

=
( 3∑

i=1

c2
i4

)
w

2d
+

(
wA4 −

w

d
σ(A4)

)
b

+
3∑
i=1

(
w

d
(σ(Ai)+ σ(A4))− wAi − wA4

)
ci4

− 1+ γ
2d

( 4∑
i=1

σ(Ai)(d − σ(Ai))−
3∑
i=1

σ(Ai ∪ A4)(d − σ(Ai ∪ A4))

)
,

where

cij := d − σ(Ai)− σ(Aj )− σ([n]\(Ai ∪ Aj))
= σ(Ai ∪ Aj)− σ(Ai)− σ(Aj ),

b = d −
4∑
i=1

σ(Ai),

w =
n∑
i=1

ai,

wAj =
∑
i∈Aj

ai .

Note that the case d = 1 was studied previously in [AS, Sec. 2]. If there is an
Ai such that φ(Ai, γ,A) is an integer, then the σ -function does not give a unique
degree for each leg (Remark 1.9). Nonetheless, the result of Theorem 2.1 is inde-
pendent of the choice of semistable degree distribution.
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As an example for how simple this formula can be, consider the following.

Corollary 2.2. For n = 2g + 2 and 1 ≤ 
 ≤ g,

Fn−i−2,i,1,1 ·D
−1

+1,

(
1

+1

)2g+2 =
{ 1


+1 if i ≡ 
 (mod 2) and i ≥ 
,

0 otherwise.

Before delving into the proof of Theorem 2.1 (in Section 2.4), we first explain our
approach (in Section 2.1) and develop a useful tool (in Section 2.2) that is a ratio-
nal lift to Ud,n of the image C in V d

γ,A of a given F-curve.

2.1. Approach to the Proof of Theorem 2.1

Let C be the image of F(A1,A2,A3,A4) in V d
γ,A under the map ϕγ,A. Let L =

O(γ,A) be an allowable polarization on Ud,n, and let L̄ = L//γ,A SL(d + 1) be
the associated ample line bundle on V d

γ,A. By the projection formula, we have

F(A1,A2,A3,A4) ·Dγ,A = C · L̄.
Therefore, proving Theorem 2.1 requires that we compute C · L̄. To do this, we
will lift C to an appropriate curve C̃ on Ud,n and perform the intersection there.

Definition 2.3. Let C be a curve in V d
γ,A, and let π : U ss

d,n → V d
γ,A be the quo-

tient map. A rational lift of C to Ud,n is a curve C̃ in Ud,n such that:

• a general point of C̃ lies in U ss
d,n; and

• π(C̃) = C and π|C̃ : C̃ ��� C is of degree 1.

A section of L̄ can be pulled back to a section of L that vanishes on the unsta-
ble locus. It follows that if we have a rational lifting C̃ then, by the projection
formula,

C · L̄ = C̃ ·
(
L−

∑
tiEi

)
for some rational numbers ti > 0; here the sum is taken over all irreducible un-
stable divisors. By the proof of [GiJM, Prop. 4.6], there are two types of unstable
divisors. One is a divisor of curves with unstable degree distribution and the other
is Ddeg, the divisor of curves contained in a hyperplane. If C̃ intersects Ddeg only
among unstable divisors, then C · L̄ = C̃ · (L− tDdeg) for some t > 0.

2.2 An Explicit Rational Lift

In this section we will construct a rational lift C̃ to Ud,n of the image C in V d
γ,A

of an F-curve F(A1,A2,A3,A4) in M0,n. This lift C̃ will be used to prove Theo-
rem 2.1 in Section 2.4.

An F-curve is isomorphic to M0,4
∼= P1. Thus the total space of an F-curve is a

family of curves over P1, which is a reducible surface for n ≥ 5 that consists of five
components. One component corresponds to a varying spine, which is isomorphic
to the universal curve over M0,4 and hence to M0,5; the other four components are
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constant families over P1, which correspond to four fixed legs. We will think of
the total space X ∼= M0,5 of spines as the blowup of three points on the diagonal
in P1× P1. The points of attachment to the legs L(Ai) that are labeled by A1, A2,
andA3 will correspond to the three sections ofX through the exceptional divisors,
while the point of attachment to the leg L(A4) will correspond to the diagonal.
We denote the classes of the total transforms of two rulings on P1× P1 by F (for
fiber) and S (for section), and we denote the exceptional divisors by Ei. Then, on
X ∼= M0,5, the ten boundary classes are given by

D15 = S − E1, D25 = S − E2, D35 = S − E3,

D45 = F + S − E1− E2 − E3, D14 = F − E1, D24 = F − E2,

D34 = F − E3, D23 = E1, D13 = E2, D12 = E3.

(1)

Here is an outline of the construction of an explicit rational lift of a curve on
V d
γ,A. For a curve isomorphic to P1 onV d

γ,A, we need to construct a family of ratio-
nal curves in P d of degree d over P1 and with n sections. To begin, we construct
a map from X to P d by constructing a base point free sublinear system V of a
certain divisor class on X. We then attach four fixed legs to make a family of
degree d rational curves. To make a family of curves whose general member is
in U ss

d,n, the general member must satisfy certain degree conditions on each irre-
ducible component and must also be nondegenerate. Let σ(Ai) be the degree of
the leg containing marked points in Ai. (If U ss

d,n = U s
d,n then the degree of the leg

is uniquely determined by the σ -function in [GiJM], but if there are strictly semi-
stable points then the degree is not determined uniquely; in the latter case, we can
take any degree distribution that gives semistable points—see Remark 1.9.) Then
the general fiber must have degree

b := d −
4∑
i=1

σ(Ai).

As the cross ratio of the four points on the spine varies, there are three points at
which the spine breaks into two components. The degree of one of these compo-
nents where Ai and Aj come together is exactly

cij := d − σ(Ai)− σ(Aj )− σ([n]\(Ai �Aj)) = σ(Ai �Aj)− σ(Ai)− σ(Aj ).
Hence we consider the following divisor class on X (which depends on an integer
a ≥ 0):

H(a) := aF + bS −
3∑
i=1

ci4Ei.

When a  0, this divisor class is base point free (Lemma 2.4) and so defines a
map to P d. Moreover, for a  0 we can take a subspaceV ⊂ H 0(X,H(a)) of di-
mension b+ 2 such that its restrictionV |F to every fiber defines a rational normal
curve of degree b; thus the image of X is nondegenerate (Lemma 2.6). In Propo-
sition 2.7, we establish that the general point of the family obtained via attaching
four fixed tails is semistable by showing that it satisfies certain degree conditions.
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Lemma 2.4. For a  0, H(a) is base point free.

Proof. Since X is a del Pezzo surface, it is well known that if H(a) is nef then
H(a) is base point free. On X ∼= M0,5, the cone of curves is generated by the
classesDij . Thus, by using the explicit descriptions of the divisorsDij given in (1),
it is straightforward to check that H(a) is nef if and only if

a ≥ ci4, b ≥ ci4, and a + b ≥
3∑
i=1

ci4.

The second inequality is immediate because b = c12+c34 = c13+c24 = c14+c23.

So if a is sufficiently large, then H(a) is nef and base point free.

Lemma 2.5. For a  0, the map H 0(X,H(a))→ H 0(F,H(a)|F ) is surjective.

Proof. By the exact sequence

0→ H 0(X,H(a)− F )
→ H 0(X,H(a))→ H 0(F,H(a)|F )→ H1(X,H(a)− F ),

it suffices to show that h1(X,H(a)−F ) = 0. SinceX is a del Pezzo surface,−KX
is ample. Thus H(a)−KX is ample for a  0 by Lemma 2.4 and hi(X,H(a)) =
hi(X,H(a)−KX +KX) = 0 for i > 0 by the Kodaira vanishing theorem. Since
H(a)−F = H(a−1) by definition, h1(X,H(a)−F ) = 0 for large a as well.

By a Riemann–Roch calculation, if a  0 then

h0(X,H(a)) = 3ab −
3∑
i=1

(
ci4 + 1

2

)
+ 1.

So for sufficiently large a, h0(X,H(a)) is greater than d + 1; hence we cannot
use the complete linear system |H(a)| to construct a map to P d. To deal with this
problem, we use the following lemma.

Lemma 2.6. Let V ⊂ H 0(X,H(a)) be a general linear subspace of dimension
h0(F,H(a)|F )+ 1 = b + 2. For a  0, the map V → H 0(F,H(a)|F ) is surjec-
tive for every fiber F.

Proof. For a given fiber F, write KF for the kernel of the map H 0(X,H(a)) →
H 0(F,H(a)|F ). From Lemma 2.5 it follows that KF is a linear space of dimen-
sion h0(X,H(a) − F ). We will show that dimV ∩ KF = 1 for every fiber F. In
particular, denote the fiber over a point y ∈ M0,4

∼= P1 by Fy , and consider the
variety

Z = {(y,V )∈ P1× Gr(b + 2,H 0(X,H(a))) | dimV ∩KFy ≥ 2}.
The fibers of Z over P1 are Schubert varieties, which are known to be irre-
ducible of codimension 2 in the Grassmannian. It follows that dimZ <

dim Gr(b+2,H 0(X,H(a)) and so Z does not map onto the Grassmannian. Con-
sequently, for the general V ∈ Gr(b + 2,H 0(X,H(a))), dimV ∩ KFy < 2 for



Veronese Quotient Models of M0,n and Conformal Blocks 731

every y ∈ P1; however, dimV ∩ KFy ≥ 1 trivially for dimension reasons. It fol-
lows that the map V → H 0(F,H(a)|F ) is surjective for every fiber F.

By Lemma 2.6, if we consider the map X → P b+1 corresponding to the linear
seriesV then it is clear that each individual fiber is mapped to P b+1 via a complete
linear series. Hence the general fiber maps to a smooth rational normal curve of
degree b, and the three special fibers map to nodal curves whose two components
have the appropriate degrees. Then, provided b < d, one can embed this P b+1 in
P d and obtain a family of curves in that projective space.

Now consider the case b = d. Since X is a surface and d ≥ 2, we can take a
point p ∈ P b+1\X. Considering a projection from p, we obtain a family of curves
in P d with the same degree distribution. We must choose the point p so that a gen-
eral member of such a family of curves is semistable. Because that member has
the correct degree distribution, it suffices to check that a general member of the
family is not contained in a hyperplane. Yet the image of a curve under projection
is degenerate only if the original curve is degenerate.

To each of the four sections we attach a family of curves that does not vary
in moduli. Using the same trick as before, we may take four copies of P1 × P1,
mapped into P d via a linear series Vi ⊂ |O(xi, yi)|, where

xi =
{
H(a) · (S − Ei) = a − ci4, i �= 4,

H(a) · (F + S −∑3
j=1Ej

) = a + b −∑3
j=1 cj4, i = 4,

and where yi = σ(Ai) is the degree of the leg. Note that if b = d then σ(Ai) =
0; in that case, we need not worry about the construction of extra components.

Proposition 2.7. The family that we have constructed is a rational lift of
ϕγ,A(F(A1,A2,A3,A4)). Furthermore, it does not intersect any GIT-unstable di-
visor other than Ddeg.

Proof. We claim that all of the members of this family satisfy the degree conditions
required by semistability. Indeed, the general member is a nodal curve with four
components labeled by the Ai. The degree of the leg labeled by Ai is O(xi, yi) ·
O(1, 0) = σ(Ai), and the degree of the spine isH(a) ·F = b = d −∑4

i=1 σ(Ai).

As one varies the cross ratio of the four points on the spine, there are three points
where the spine breaks into two components. The degree of these components are,
for instance, H(a) · E1 = c14 = d − σ(A4) − σ(A1) − σ([n]\(A4 ∪ A1)) and
H(a) · (F − E1) = b − c14 = d − σ(A2)− σ(A3)− σ([n]\(A2 ∪ A3)).

2.3. Divisor Classes on Ud,n

The main result of this section is Lemma 2.9, which gives a numerical relation
between several divisor classes on Ud,n.

Definition 2.8. Let H be the divisor class on Ud,n parameterizing curves that
meet a fixed codimension 2 linear subspace in P d. Let Dk be the divisor class on
Ud,n that is the closure of the locus parameterizing curves with two irreducible
components with respective degrees k and d − k. Finally, let Ddeg be the divisor
of curves contained in a hyperplane.
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Lemma 2.9. The following numerical relation holds in N1(Ud,n):

Ddeg = 1

2d

(
(d + 1)H −

!d/2"∑
k=1

k(d − k)Dk

)
.

To prove this result, we will use a result of [CHSta] about the moduli space of sta-
ble maps. A map f : (C,p1, . . . ,pn) → P r from an arithmetic genus 0 curve C
with n marked points to P r is called stable if

• C has at worst nodal singularities,
• pi are distinct smooth points on C, and
• ωC +∑

pi + f ∗O(3) is ample.

We say that f has degree d if f ∗O(1) has degree d on C. A moduli space of sta-
ble maps M0,n(P

r, d) is the moduli space of degree d stable maps from genus 0
n-pointed curves to P r. For more information about moduli space of stable maps,
see [FP].

Here is a list of properties of M0,n(P
d, d) that we will use in the paper.

(i) There is a forgetful map f : M0,n(P
d, d) → M0,0(P

d, d) that forgets the n
marked points and stabilizes the map.

(ii) There are several functorial morphisms. A cycle morphism M0,n(P
d, d)→

Chow(1, d, P d) maps a stable map to its image of the fundamental cycle of
the domain. There are n evaluation maps M0,n(P

d, d)→ P d that send a sta-
ble map to the image of ith marked points on P d. Taking the product of these
maps yields a cycle map

g : M0,n(P
d, d)→ Chow(1, d, P d)× (P d)n

that clearly factors through Ud,n.
(iii) We can define divisor classes H, Dk , and Ddeg on M0,n(P

d, d) using the
descriptions given in Definition 2.8.

Proof of Lemma 2.9. By [CHSta, Lemma 2.1], on the moduli space of stable maps
M0,0(P

d, d) we have

Ddeg = 1

2d

(
(d + 1)H −

!d/2"∑
k=1

k(d − k)Dk

)
.

If we pull back Ddeg by the forgetful map f : M0,n(P
d, d) → M0,0(P

d, d) then
we obtain the same formula for Ddeg on M0,n(P

d, d). Now, for the cycle map
g : M0,n(P

d, d) → Ud,n, we have g∗(H ) = H = OChow(1), g∗(Dk) = Dk , and
g∗(Ddeg) = Ddeg. As a result, the same formula holds for Ud,n.

2.4. Proof of Theorem 2.1

In this section we prove Theorem 2.1, which relies on the curve constructed in
Section 2.2.
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Proof. As explained in Section 2.1, to prove Theorem 2.1 we shall compute the in-
tersection ofC, the image ofF(A1,A2,A3,A4) inV d

γ,A, with the natural ample line

bundle L̄. For this it suffices to find a rational lift C̃ of this curve to Ud,n such that
a general element of C̃ is semistable and then to compute the intersection in Ud,n.

By Proposition 2.7, the family constructed in Section 2.2 has this property; we
can therefore use it to carry out these computations. To compute the intersection
of C̃ with OChow(1), fix a general codimension 2 linear space in P d. The inter-
section number is precisely the number of curves in the family that intersect this
linear space. In other words, it is the total degree of our five surfaces. Hence

C̃ ·OChow(1)

= H(a)2 +
4∑
i=1

O(xi, yi)2

= 2ab −
3∑
i=1

c2
i4 +

3∑
i=1

2(a − ci4)σ(Ai)+ 2

(
a + b −

3∑
j=1

cj4

)
σ(A4)

= 2ad + 2σ(A4)b −
3∑
i=1

c2
i4 −

3∑
i=1

2(σ(Ai)+ σ(A4))ci4.

Similarly, to compute the intersection of C̃ with OP d
j
(1), fix a general hyper-

plane in P d. The intersection number is precisely the number of points at which
the j th section meets this hyperplane; in other words, it is the degree of the j th
section. If Ai is the part of the partition containing j, then

C̃ ·OP d
j
(1) = O(xi, yi) ·O(0, 1) = xi =

{
a − ci4, i �= 4,

a + b −∑3
k=1 ck4, i = 4.

One can then easily compute the intersection with L = ⊗n
j=1 OP d

j
(aj ) ⊗

OChow(γ ) by linearity. If we let wAj =
∑

i∈Aj ai and w =∑n
i=1 ai, then

C̃ · L = γ

(
2ad + 2σ(A4)b −

3∑
i=1

c2
i4 −

3∑
i=1

2(σ(Ai + A4))ci4

)

+
3∑
i=1

wAi (a − ci4)+ wA4

(
a + b −

3∑
i=1

ci4

)

= (2dγ + w)a −
3∑
i=1

c2
i4γ + (2σ(A4)γ + wA4)b

−
3∑
i=1

(
2γ (σ(A1)+ σ(A4))+ wAi + wA4

)
ci4.

Recall that C · L̄ = C̃ · (L − tDdeg) for some positive rational number t (Sec-
tion 2.1). It remains to determine the value of t. By Lemma 2.9,
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C̃ ·Ddeg

= d + 1

2d

(
2ad + 2σ(A4)b −

3∑
i=1

c2
i4 −

3∑
i=1

2(σ(Ai)+ σ(A4))ci4

)

+ 1

2d

( 4∑
i=1

σ(Ai)(d − σ(Ai))−
3∑
i=1

(σ(Ai ∪ A4))(d − σ(Ai ∪ A4))

)
.

Note that the rational lift depends on the choice of a. To obtain an intersection
number C · L̄ = C̃ · (L− tDdeg) that is independent of our choice of a, the coef-
ficient of a must be 0. Thus

2dγ + w − t (d + 1)

2d
2d = 0

and t = 2dγ+w
1+d = 1+ γ. Therefore,

C · L̄
= C̃ · (L− (1+ γ )Ddeg)

=
( 3∑

i=1

c2
i4

)
w

2d
+

(
wA4 −

w

d
σ(A4)

)
b

+
3∑
i=1

(
w

d
(σ(Ai)+ σ(A4))− wAi − wA4

)
ci4

− 1+ γ
2d

( 4∑
i=1

σ(Ai)(d − σ(Ai))−
3∑
i=1

σ(Ai ∪ A4)(d − σ(Ai ∪ A4))

)
.

2.5. Example and Application of Theorem 2.1

Because the F-curves span the vector space of 1-cycles, Theorem 2.1 gives (in
principal) the class of Dγ,A in the Nerón–Severi space. Using a particular basis
(described in Definition 2.10), we explicitly write down the class of Dγ,A for Sn-
invariant weights A. The classes depend on the intersection numbers, which—as
shown in Example 2.13 to follow—are especially simple for D
−1


+1,
(

1

+1

)2g+2 .

Definition 2.10 [AGStS, Sec. 2.2.2, Prop. 4.1]. For 1 ≤ j ≤ g := !n/2 − 1",
let Fj be the Sn-invariant F-curve F1,1,j,n−j−2. The set {Fj : 1 ≤ j ≤ g} forms a
basis for the group of 1-cycles N1(M0,n)

Sn .

Definition 2.11 [KeMc, Sec. 3]. For 2 ≤ j ≤ !n/2", let Bj be the Sn-invariant
divisor given by the sum of boundary divisors indexed by sets of size j :

Bj =
∑

J⊂[n],|J |=j
δJ .

The set {Bj : 2 ≤ j ≤ g + 1} forms a basis for the group of cycles N1(M0,n)
Sn of

codimension 1.
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Corollary 2.12. Fix n = 2g + 2 (or n = 2g + 3) and j ∈ {1, . . . , g}, and
write a(γ,A)j = Dγ,A · Fj . If A is an Sn-invariant choice of weights then Dγ,A ≡∑g

r=1 b(γ,A)rBr+1, where

b(γ,A)r =
r−1∑
j=1

(
r(r + 1)

n− 1
− (r − j)

)
a(γ,A)j + r(r + 1)

n− 1

g∑
j=r

a(γ,A)j

for n = 2g + 3 odd and

b(γ,A)r =
r−1∑
j=1

(
r(r + 1)

n− 1
− (r − j)

)
a(γ,A)j

+ r(r + 1)

n− 1

g−1∑
j=r

a(γ,A)j + r(r + 1)

2(n− 1)
a(γ,A)g

for n = 2g + 2 even.

Proof. This claim follows from the formula given in [AGStS, Thm. 5.1].

Example 2.13.

D
−1

+1,

(
1

+1

)2g+2

= 1


+ 1

g∑
r=1

(
r(r + 1)

n− 1

(
g − 
+ 1

2

)
−

⌈
r − 
+ 1

2

⌉
+

⌊
r − 
+ 1

2

⌋
+

)
Br+1,

where
�x�+ = max{�x�, 0}, !x"+ = max{!x", 0}.

Proof. Indeed, by the previous results we have

b(γ,A)r =
r−1∑
j=1

(
r(r + 1)

n− 1
− (r − j)

)
a(γ,A)j

+ r(r + 1)

n− 1

g−1∑
j=r

a(γ,A)j + r(r + 1)

2(n− 1)
a(γ,A)g

= r(r + 1)

n− 1

g∑
j=1

a(γ,A)j − r(r + 1)

2(n− 1)
a(γ,A)g −

r−1∑
j=1

(r − j)a(γ,A)j .

By Corollary 2.2,
g∑

j=1

a(γ,A)j =
{ 1


+1

( g−

2 + 1

)
if g ≡ 
 (mod 2),

1

+1

( g−
+1
2

)
if g �≡ 
 (mod 2).

Also, a(γ,A)g = 1

+1 if g ≡ 
 (mod 2) and a(γ,A)g = 0 if g �≡ 
 (mod 2), so we

can write

b(γ,A)r = 1


+ 1

r(r + 1)

n− 1

g − 
+ 1

2
−

r−1∑
j=1

(r − j)a(γ,A)j .
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A similar case-by-case computation yields

r−1∑
j=1

(r − j)a(γ,A)j =




(
r−
+1

2

)2
if r �≡ 
 (mod 2) and 
 ≤ r − 1,

(r−
)(r−
+2)
4 if r ≡ 
 (mod 2) and 
 ≤ r − 1,

0 if 
 > r − 1

=
⌈
r − 
+ 1

2

⌉
+

⌊
r − 
+ 1

2

⌋
+
.

3. A New Modular Interpretation for a Particular Family
of Veronese Quotients

In this section, we study the family V g+1−


−1

+1,

(
1

+1

)2g+2 of birational models for M0,n,

where n = 2(g + 1) and 1 ≤ 
 ≤ g. In Theorem 3.5 we give a new modular in-
terpretation of them as certain contractions of Hassett spaces,

τ
 : M0,
(

1

+1−ε

)n → V
g+1−


−1

+1,

(
1

+1

)2g+2 ,

where even chains (described in Definition 3.4) are replaced by particular curves.
In order to establish the existence of morphisms τ
 we first prove Proposition 3.2,
which identifies the Veronese quotient associated to a nearby linearization with
the Hassett space M0,

(
1

+1−ε

)n . The results in this section allow us to prove in Sec-

tion 4 that nontrivial conformal block divisors D(sl2, 
,ω2g+2
1 ) are pullbacks of

ample classes from V
g+1−


−1

+1,

(
1

+1

)2g+2 .

Remark 3.1. Because their defining linearizations
(

−1

+1,

(
1

+1

)2g+2)
lie on GIT

walls, the Veronese quotients V g+1−


−1

+1,

(
1

+1

)2g+2 admit strictly semistable points and

so their corresponding moduli functors are not actually separated. The quotient
described in Theorem 3.5 is not isomorphic to a modular compactification in
the sense of [Sm] (cf. Remark 3.6). Indeed, the only known method for con-
structing this compactification is via GIT. This fact highlights the strength of the
Veronese quotient construction, since it can be used (as we show here) to construct
“new” compactifications of M0,n—in other words, compactifications that have not
been described and cannot be described through any of the previously developed
techniques.

3.1. Defining the Maps τ


In this section we define the morphism

τ
 : M
0,

(
1

+1−ε

)2g+2 → V
g+1−


−1

+1,

(
1

+1

)2g+2

obtained by variation of GIT. As mentioned previously, each of the linearizations(

−1

+1,

(
1

+1

)2g+2)
lies on a wall. To show that τ
 exists, we will use the general

“variation of GIT” fact that any quotient corresponding to a GIT chamber admits
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a morphism to a quotient corresponding to a wall of that chamber. Namely, in
Proposition 3.2 we shall identify the Veronese quotient corresponding to a GIT
chamber bordering the GIT wall that contains the linearization

(

−1

+1,

(
1

+1

)2g+2)
.

We then use this identification to describe the morphism to the Veronese quotient
V
g+1−


−1

+1,

(
1

+1

)2g+2 . We remark that the Veronese quotient discussed in Proposition 3.2

is not, in general, a modular compactification of M0,n but is (unlike the quotients
described in Theorem 3.5) isomorphic to one.

Proposition 3.2. For 2 ≤ 
 ≤ g − 1 and ε > 0 sufficiently small, the Hassett
space M

0,
(

1

+1−ε

)2g+2 is isomorphic to the normalization of the Veronese quotient

V
g+1−


−1

+1+ε ′,

(
1

+1−ε

)2g+2 .

Here ε ′ is a positive number that is uniquely determined by the data d =
g + 1− 
 and A = (

1

+1 − ε

)2g+2
(cf. Definition 1.1).

Proof. By Proposition 1.3, there is a morphism

φγ : M0,
(

1

+1−ε

)2g+2 → V
g+1−


−1

+1+ε ′,

(
1

+1−ε

)2g+2

that fits into the following commutative diagram:

M0,n

ρ(
1

+1
−ε)2g+2

��

ϕ
γ,

(
1

+1
−ε)2g+2

���������������

M0,
(

1

+1−ε

)2g+2
φγ

�� V
g+1−


−1

+1+ε ′,

(
1

+1−ε

)2g+2 .

So to prove the result, it suffices to show that φγ is bijective. Since (g − 
)γ +
(2g + 2)

(
1

+1 − ε

) = g + 2− 
, it follows that

γ = 1− 2


+ 1
+ 2(g + 1)

g − 
 ε.

If 
 ≥ 3, then γ > 1
2 and a curve in the semistable locus U ss

g+1−
,2g+2 does not
have multinodal singularities by Lemma 1.2. Similarly, the sum of the weights at
a node cannot exceed 1− γ = 2


+1 − 2(g+1)
g−
 ε < 2

(
1

+1 − ε

)
. At a node, then, there

is at most one marked point.
If 
 = 2 then γ > 1

3 , so a curve inU ss
g+1−
,2g+2 has at worst a multinodal point of

multiplicity 3. Note that1−(3−1)γ = 1
3− 4(g+1)

g−2 ε < 1
3−ε; hence, by Lemma1.2,

there can be no marked point at a triple point. Similarly, since 1− (2 − 1)γ =
2
3 − 2(g+1)

g−2 ε < 2
(

1
3 − ε

)
, there can be at most one marked point at a node.

In short: There is no positive-dimensional moduli of curves contracted to the
same curve; that is, φγ is an injective map. The surjectivity follows directly from
the properness of both sides.
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Remark 3.3. 1. In [GiJM, Thm. 7.1, Cor. 7.2] the authors show that, for certain
values of γ and A, the corresponding Veronese quotient is M0,A. Proposition 3.2
indicates precise values of γ and A when the latter is symmetric.

2. The normalization map of a Veronese quotient is always bijective [GiJM,
Rem. 6.2]. So at least on the level of topological spaces, the normalization is
equal to the Veronese quotient itself.

3. If g ≡ 
mod 2, then there are strictly semistable points on Ug+1−
,2g+2 for

the linearization
(

−1

+1 + ε ′,

(
1

+1 − ε

)2g+2)
. Indeed, for a set J of g + 1 marked

points, the weight function

φ(J, γ,A) = (g + 1)
(

1

+1 − ε

)− 1

2

+1 − 2(g+1)

g−
 ε

= (g − 
)(g − 
)− (g − 
)(g + 1)(
+ 1)ε

2(g − 
)− 2(g + 1)(
+ 1)ε
= g − 


2

is an integer. Therefore, the quotient stack [U ss
g+1−
,2g+2/SL(g + 2 − 
)] is not

modular in the sense of [Sm].
4. Even if the GIT quotient is modular, the moduli-theoretic meaning of

M
0,

(
1

+1−ε

)2g+2 and V
g+1−


−1

+1+ε ′,

(
1

+1−ε

)2g+2

may be different in general because multinodal singularities and a marked point
on a node are both allowed on the GIT quotient. Even so, the moduli spaces are
isomorphic.

5. The condition on 
 is necessary. Indeed, if 
 = 1 or g then the GIT quotient
is not isomorphic to a Hassett space.

3.2. The New Modular Interpretation

In this section we will prove Theorem 3.5. This theorem describes the Veronese
quotients V g+1−



−1

+1,

(
1

+1

)2g+2 as images of contractions where the even chains in the

Hassett spaces M0,
(

1

+1−ε

)n are replaced by other curves that we describe next.

Definition 3.4. A curve (C, x1, . . . , x2g+2) ∈ M
0,

(
1

+1−ε

)2g+2 is an odd chain

(resp., even chain) if C contains a connected chain C1∪ · · ·∪Ck of rational curves
such that the following statements hold.

(i) Each Ci contains exactly two marked points.
(ii) Each interior component Ci for 2 ≤ i ≤ k − 1 contains exactly two nodes:

Ci ∩ Ci−1 and Ci ∩ Ci+1.

(iii) Aside from the two marked points, each of the two end components C1 and
Ck contains two “special” points, where a special point is either a node or a
point at which 
+1 marked points coincide. In the first case, we refer to the

connected components of C \⋃k
i=1Ci as “tails”; we regard the second type

of special point as a tail of degree 0.
(iv) The number of marked points on each of the tails is odd (resp., even).
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Figure 1 shows two examples of odd chains when 
 is even.

�+ 1 ptsC1 C2 C3 C4 C1 C2 C3 C4

Figure 1 Examples of odd chains

Theorem 3.5. If 3 ≤ 
 ≤ g − 1 and 
 is even (resp., odd ), then the map τ
 re-
stricts to an isomorphism away from the locus of odd chains (resp., even chains).
If (C, x1, . . . , x2g+2) is an odd chain (resp., even chain), then τ
(C, x1, . . . , x2g+2)

is strictly semistable and its orbit closure contains a curve in which the chain
C1∪· · ·∪Ck has been replaced by a chainD1∪· · ·∪Dk+1 with two marked points
at each node Di ∩Di+1 (see Figure 2).

2 pts
2 pts

2 pts
2 pts

T1 T2 T1 T2

C1 C2 C3 C4

⇒

Figure 2 The contraction

Proof. Note that both the Hassett space and the GIT quotient are stratified by the
topological types of parameterized curves. Furthermore, τ
 is compatible with
these stratifications. Hence τ
 contracts a curve B if and only if

• B is in the closure of a stratum,
• a general point (C, x1, . . . , x2g+2)ofB has irreducible componentsC1,C2, . . . ,Ck

with positive-dimensional moduli,
• Ci is contracted by the map from C to τ
(C, x1, . . . , x2g+2), and
• the configurations of points on the irreducible components other than the Ci are

fixed.

A component Ci ⊂ C ∈ M
0,

(
1

+1−ε

)2g+2 has positive-dimensional moduli if it

has four or more distinct special points. If a tail with k points is contracted,
then k

(
1

+1

) ≤ 1. But then k
(

1

+1 − ε

)
< 1, so such a tail is impossible on

M
0,

(
1

+1−ε

)2g+2 . Thus no tail is contracted. Now γ = 
−1

+1 ≥ 1

2 . By Lemma 1.2,

a curve (D, y1, . . . , y2g+2) ∈ U ss
g+1−
,2g+2 has at worst triple nodes if 
 = 3 and

nodes if 
 ≥ 4. Moreover, the sum of the weights on triple nodes cannot exceed
1− 2γ = 3−



+1 ≤ 0, so there are no marked points at a triple node. Since 1− γ =
2

+1, there are at most two marked points at a node. Therefore, the only possible
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contracted component is an interior component Ci with two points of attachment
and two marked points.

Now let Ci be such a component. Connected to Ci are two tails T1 and T2

(not necessarily irreducible) with i and 2g− i marked points, respectively. (Here
we will regard a point with 
 + 1 marked points or, equivalently, of total weight
1− (
+ 1)ε as a tail of degree 0.) On the one hand, if i ≡ 
mod 2 then φ(T1) =
i−
−1

2 and φ(T2) = 2g−i−
−1
2 (see Definition 1.6), so neither is an integer. Hence

the degree of the component Ci is

d − (σ(T1)+ σ(T2)) = g + 1− 
−
(⌈

i − 
− 1

2

⌉
+

⌈
2g − i − 
− 1

2

⌉)
= 1,

from which it follows that Ci is not contracted by the map to τ
(C, x1, . . . , x2g+2).

On the other hand, if i ≡ 
 + 1mod 2, then both φ(T1) = i−
−1
2 and φ(T2) =

2g−i−
−1
2 are integers. Therefore, this curve lies in the strictly semistable locus and

the image τ
(C, x1, . . . , x2g+2) can be represented by several possible topological
types. By [GiJM, Prop. 6.7], the orbit closure of τ
(C, x1, . . . , x2g+2) contains a
curve in which Ci is replaced by the union of two lines D1∪D2 with two marked
points at the node D1 ∩D2.

Remark 3.6. Note that τ
 restricts to an isomorphism on the (nonclosed) locus of
curves consisting of two tails connected by an irreducible bridge with four marked
points. However, on the locus of curves consisting of two tails connected by a
chain of two bridges with two marked points each, τ
 forgets the data of the chain.
Hence the map τ
 fails to satisfy axiom (3) of [Sm, Def. 1.5]. In particular, the
Veronese quotient described in Theorem 3.5 is not isomorphic to a modular com-
pactification in the sense of [Sm].

3.3. Morphisms between the Moduli Spaces We Have Described

Corollary 3.7. If 1 ≤ 
 ≤ g − 2, then there is a morphism

ψ
,
+2 : M
0,

(
1

+1−ε

)2g+2 → V
g−1−


+1

+3,

(
1


+3

)2g+2

that preserves the interior.

Proof. For 1≤ 
 ≤ g − 3 we consider the composition

M
0,

(
1

+1−ε

)2g+2 → M
0,

(
1


+3−ε
)2g+2 → V

g−1−


+1

+3,

(
1


+3

)2g+2 ,

where the first morphism is Hassett’s reduction morphism [Ha, Thm. 4.1] and the
last morphism is τ
+2.

If 
 = g − 2, then V
g−1−


+1

+3+ε ′,

(
1


+3−ε
)2g+2 = (P1)2g+2 //SL(2) with symmetric

weight datum. Because there is a morphism M0,A → (P1)2g+2 //SL(2) for any
symmetric weight datum A [Ha, Thm. 8.3], we obtain ψg−2,g.

To derive morphisms between the moduli spaces described in Theorem 3.5, we
consider the following diagram:
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M0,n

������������

�������������

M0,
(

1

+1−ε

)2g+2 ��

∼=
��

ψ
,
+2

�������������������������������

τ


��

M0,
(

1

+3−ε

)2g+2

∼=
��

τ
+2

��

V
g+1−


−1

+1+ε ′,

(
1

+1−ε

)2g+2

��

V
g−1−


+1

+3+ε ′,

(
1


+3−ε
)2g+2

��

V
g+1−


−1

+1,

(
1

+1

)2g+2 ������������ V
g−1−


+1

+3,

(
1


+3

)2g+2

Proposition 3.8. If 3 ≤ 
 ≤ g−2, then the morphismψ
,
+2 factors through τ
.

Proof. By the rigidity lemma [Ke, Def.-Lemma 1.0] it suffices to show that, for
any curve B ⊂ M0,

(
1

+1−ε

)2g+2 contracted by τ
, the morphism ψ
,
+2 is constant.

We have already described the curves contracted by τ
 in the proof of Theorem 3.5,
so it suffices to show that the same curves B are contracted by ψ
,
+2.

When 
 < g−2, we have i ≡ 
+1 mod 2 if and only if i ≡ (
+2)+1 mod 2;
hence the image of B is contracted by

τ
+2 : M0,
(

1

+1−ε

)2g+2 → V
g−1−


+1

+3,

(
1


+3

)2g+2 .

If 
 = g − 2, then ψg−2,g is Hassett’s reduction morphism

M0,
(

1
g−1−ε

)2g+2 → (P1)2g+2 //SL(2).

In this case there are two types of odd/even chains (of length 1 or 2). It is straight-
forward to check that these curves are contracted to an isolated singular point of
(P1)2g+2 //SL(2) parameterizing strictly semistable curves.

4. Higher-Level Conformal Block Divisors
and Veronese Quotients

The main goal of this section is to prove Theorem 4.6, which states that if n =
2g + 2 then the divisors Dγ,A = D
−1


+1,
(

1

+1

)2g+2 and D(sl2, 
,ω2g+2
1 ) determine the

same birational models. We shall prove this claim by showing that D(sl2, 
,ω2g+2
1 )

and Dγ,A lie on the same face of the semi-ample cone.
Toward this end, we use a set of Sn-invariant F-curves (given in Definition 2.10)

that were shown in [AGStS, Prop. 4.1] to form a basis for Pic(M0,n)
Sn. Recall

that we used Theorem 2.1 to obtain, in Corollary 2.2, a simple formula for the
intersection of these curves with Dγ,A. Here we will show (in Corollary 4.5)



742 A. Gibney, D. Jensen, H. -B. Moon, & D. Swinarski

that D(sl2, 
,ω2g+2
1 ) is equivalent to a nonnegative combination of the divisors{D
+2k−1


+2k+1,
(

1

+2k+1

)2g+2 : k ∈ Z≥0, 
 + 2k ≤ g
}
. This claim follows from Proposi-

tion 4.4, which shows that the nonzero intersection numbers D(sl2, 
,ω2g+2
1 ) · Fi

are nondecreasing.

4.1. Definition of Vector Bundles of Conformal Blocks
and Related Notation

In this section we briefly give the definition of conformal block divisors and explain
our notation. The reader can find the details in [U, Chaps. 3, 4]. For representation-
theoretic terminologies and definitions, consult [Hu].

Let g be a simple Lie algebra. Fix a Cartan subalgebra h ⊂ g and positive
roots �+. Let θ ∈�+ be the highest root, and let (·, ·) be the Killing form normal-
ized so that (θ, θ) = 2. For a nonnegative integer 
, the Weyl alcove P
 is the set
of dominant integral weights λ satisfying (λ, θ) ≤ 
.

For a collection of data (g, 
, �λ = (λ1, . . . , λn))—where g is a simple Lie
algebra, 
 is a nonnegative integer, and �λ is a collection of weights in P
—we can
construct a conformal block vector bundle V(g, 
, �λ) as follows.

For a simple Lie algebra g, we can construct an affine Lie algebra

ĝ = g⊗ C((z))⊕ Cc,

where c is a central element, via the bracket operation

[X ⊗ f ,Y ⊗ g] = [X,Y ]⊗ fg + c(X,Y )Resz=0 g df.

For each 
 and λ∈P
 there exists a unique integrable highest-weight ĝ-module
Hλ, where c acts as multiplication by 
. Let H�λ =

⊗n
i=1 Hλi . Then there is a nat-

ural ĝn-action on H�λ, where

ĝn =
n⊕
i=1

g⊗ C((zi))⊕ Cc.

Now we fix a stable curve X = (C,p1, . . . ,pn) ∈ Mg,n and also set U =
C−{p1, . . . ,pn}. There is a natural map OC(U) ↪→⊕n

i=1 C((zi)). Thus we have
a map (indeed, it is a Lie algebra homomorphism)

g(X) = g⊗OC(U) ↪→
n⊕
i=1

g⊗ C((zi))⊕ Cc = ĝn.

The vector space V(g, 
, �λ)|X of conformal blocks is defined by H�λ/g(X)H�λ. By
[U, Thm. 4.4], this construction can be sheafified; by [U, Thm. 4.19], these vector
spaces form a vector bundle V(g, 
, �λ) of finite rank over the moduli stack Mg,n.

Finally, a conformal block divisor D(g, 
, �λ) is the first Chern class of V(g, 
, �λ).
In this paper, we focus on the g = sl2 cases.
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4.2. Intersections of Fi with D(sl2, 
,ω2g+2
1 ) Are Nondecreasing

In this section we prove that the nonzero intersection numbers of D(sl2, 
,ω2g+2
1 )

with the Sn invariant F-curves Fi are nondecreasing. We recall some notation
from [AGS].

Definition 4.1. Define

r
(a1, . . . , an) := rank V(sl2, 
, (a1ω1, . . . , anω1))

and, as a special case,

r
(k
j, t) := rank V(sl2, 
, (kω1, . . . , kω1︸ ︷︷ ︸

j times

, tω1)).

For the basic numerical properties of r
(a1, . . . , an), see [AGS, Sec. 3].

Proposition 4.2. The ranks r
(1j, t) are determined by the system of recurrences

r
(1
j, t) = r
(1

j−1, t − 1)+ r
(1j−1, t + 1), t = 1, . . . , 
, (2)

together with seeds

r
(1
j, j) = 1 if j ≤ 
 and r
(1

j, j) = 0 if j > 
.

Remark. The recurrence (2) is reminiscent of the recurrence for Pascal’s triangle.

Proof of Proposition 4.2. Partition the weight vector (1, . . . ,1, t) = 1jt as
1j−1∪ (1, t). If j + t is odd then, by the odd sum rule [AGS, Prop. 3.5], r
(1j, t) =
0. So assume that j + t is even. Then the factorization formula [AGS, Prop. 3.3]
states that

r
(1
j, t) =


∑
µ=0

r
(1
j−1,µ)r
(1, t,µ). (3)

We can simplify this expression. Recall that, by the sl2 fusion rules [AGS, Prop.
3.4], r
(1, t,µ) is 0 if µ > t + 1 or if µ < t − 1. Thus the only possibly nonzero
summands in (3) are when µ = t −1, t, or t +1. But when µ = t, by the odd sum
rule [AGS, Prop. 3.5] we have r
(1, t, t) = 0. Thus (3) simplifies as follows:

r
(1
j, t) = r
(1

j−1, t − 1)+ r
(1j−1, t + 1), t = 1, . . . , 
− 1;
r
(1

j, 
) = r
(1
j−1, 
− 1).

Since r
(1j−1, 
+ 1) = 0, we can unify these two lines and thereby obtain (2).

Lemma 4.3. Let i1 < i2 and j1 < j2. Suppose i1 ≡ i2 ≡ j1 ≡ j2 (mod 2). Then
r
(1i1, j1)r
(1i2, j2)− r
(1i1, j2)r
(1i2, j1) ≥ 0.

Proof. We prove the result by induction on i2. For the base case, we can check
that (i1, i2) = (0, 2) and (i1, i2) = (1, 3). If (i1, i2) = (0, 2) then the result is true
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because r
(t) = 0 if t > 0. Similarly, if (i1, i2) = (1, 3) then the result is true
because r
(1, t) = 0 if t > 1.

So suppose the result has been established for all quadruples (i1, i2, j1, j2) with
i2 ≤ k − 1. We now apply the recurrence (2):

r
(1
i1, j1)r
(1

i2, j2)− r
(1i1, j2)r
(1
i2, j1)

= (
r
(1

i1−1, j1− 1)+ r
(1i1−1, j1+ 1)
)(
r
(1

i2−1, j2 − 1)+ r
(1i2−1, j2 + 1)
)

− (
r
(1

i1−1, j2 − 1)+ r
(1i1−1, j2 + 1)
)(
r
(1

i2−1, j1− 1)+ r
(1i2−1, j1+ 1)
)

= r
(1
i1−1, j1− 1)r
(1

i2−1, j2 − 1)− r
(1i1−1, j2 − 1)r
(1
i2−1, j1− 1)

+ r
(1i1−1, j1− 1)r
(1
i2−1, j2 + 1)− r
(1i1−1, j2 + 1)r
(1

i2−1, j1− 1)

+ r
(1i1−1, j1+ 1)r
(1
i2−1, j2 − 1)− r
(1i1−1, j2 − 1)r
(1

i2−1, j1+ 1)

+ r
(1i1−1, j1+ 1)r
(1
i2−1, j2 + 1)− r
(1i1−1, j2 + 1)r
(1

i2−1, j1+ 1).

By the induction hypothesis, each of the last four lines is nonnegative.

Proposition 4.4. Suppose 
 ≤ i ≤ g − 2 and i ≡ 
 (mod 2). Then

D(sl2, 
,ω2g+2
1 ) · Fi ≤ D(sl2, 
,ω2g+2

1 ) · Fi+2.

Yet if i ≡ 
+ 1 (mod 2), then D(sl2, 
,ω2g+2
1 ) · Fi = 0.

Proof. By [AGS, Thm. 4.2] we have D(sl2, 
,ω2g+2
1 ) ·Fi = r
(1i, 
)r
(1n−i−2, 
).

By the odd sum rule [AGS, Prop. 3.5] we see that r
(1i, 
) = 0 if i ≡ 
+1 (mod 2).
In the remaining cases, we wish to show that

r
(1
i+2, 
)r
(1

n−i−4, 
)− r
(1i, 
)r
(1n−i−2, 
) ≥ 0.

We apply the recurrence (2) and use r
(1j, t) = 0 if t > 
 to obtain

r
(1
i+2, 
)r
(1

n−i−4, 
)− r
(1i, 
)r
(1n−i−2, 
)

= (
r
(1

i+1, 
− 1)+ r
(1i+1, 
+ 1)
)
r
(1

n−i−4, 
)

− r
(1i, 
)(r
(1n−i−3, 
− 1)+ r
(1n−i−3, 
+ 1)
)

= r
(1
i+1, 
− 1)r
(1

n−i−4, 
)− r
(1i, 
)r
(1n−i−3, 
− 1)

= (
r
(1

i, 
− 2)+ r
(1i, 
))r
(1n−i−4, 
)

− r
(1i, 
)(r
(1n−i−4, 
− 2)+ r
(1n−i−2, 
)
)

= r
(1
i, 
− 2)r
(1

n−i−4, 
)− r
(1i, 
)r
(1n−i−4, 
− 2).

By Lemma 4.3, we have

r
(1
i, 
− 2)r
(1

n−i−4, 
)− r
(1i, 
)r
(1n−i−4, 
− 2) ≥ 0.

Corollary 4.5. The divisor D(sl2, 
,ω2g+2
1 ) is a nonnegative linear combina-

tion of the divisors
{D
+2k−1


+2k+1,
(

1

+2k+1

)2g+2 : k ∈ Z≥0, 
 + 2k ≤ g
}
. Moreover, the

coefficient of D
−1

+1,

(
1

+1

)2g+2 in this expression is strictly positive.
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Proof. The statement follows from Proposition 4.4 and the intersection numbers
computed in Corollary 2.2.

4.3. Morphisms Associated to Conformal Block Divisors

We are now in a position to prove that the divisors D(sl2, 
,ω2g+2
1 ) give maps to

Veronese quotients.

Theorem 4.6. The conformal block divisor D(sl2, 
,ω2g+2
1 ) on M0,2g+2 for 1 ≤


 ≤ g is the pullback of an ample class via the morphism

ϕ
−1

+1,A = φ
−1


+1
& ρA : M0,n

ρA−→ M0,A

φ(
−1)/(
+1)−−−−−−→ V
g+1−


−1

+1,A

.

Here A = (
1

+1

)2g+2
and ρA is the contraction to Hassett’s moduli space M0,A of

stable weighted pointed rational curves.

Proof. By [AGS, Cors. 4.7, 4.9] and Corollary 2.2,

D
−1

+1,

(
1

+1

)2g+2 ≡ D(sl2, 
,ω2g+2
1 )

if 
 = 1, 2. If 
 ≥ 3 then, by Corollary 4.5, D(sl2, 
,ω2g+2
1 ) is a nonnegative linear

combination of D
+2k−1

+2k+1,

(
1


+2k+1

)2g+2 for k ∈Z≥0 and 
+ 2k ≤ g. In the latter case,

by Proposition 3.8 we see that all of the divisors in this nonnegative linear combi-
nation are pullbacks of semi-ample divisors from V

g+1−


−1

+1,A

. Moreover, one of them

is ample and appears with strictly positive coefficient. The result follows.

Remark 4.7. If n is odd, then all of D(sl2, 
, (ω1, . . . ,ω1)) is trivial [Fa, Lem-
ma 4.1]. It therefore suffices to consider n = 2g + 2 cases.

We note that, for a sequence of dominant integral weights (k1ω1, . . . , knω1) of
sl2, the integer

(∑n
i=1

ki
2

)− 1 is called the critical level c
. By [Fa, Lemma 4.1],
if 
 is strictly greater than the critical level then D(sl2, 
, (k1ω1, . . . , knω1)) ≡ 0,
in which case the corresponding morphism is a constant map.

If k1 = · · · = kn = 1 then the critical level is equal to g, so it is enough to study
the cases 1≤ 
 ≤ g. Hence Theorem 4.6 is a complete answer for the cases of Lie
algebra sl2 and weight data ωn

1.

5. Conjectural Generalizations

Numerical evidence suggests that the connection between Veronese quotients and
slr conformal block divisors holds in a more general setting. In this section, we
describe some of this evidence and make a few conjectures.

5.1. sl2 Cases

We start by considering sl2 symmetric weight cases—that is, D(sl2, 
, kωn
1 ) for

1≤ k ≤ 
. Theorem 4.6 tells us that when k = 1, the associated birational models
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are Veronese quotients. Before we can predict the birational models associated to
other conformal block divisors, we need the following useful lemma.

Lemma 5.1 [RW, (17)]. The rank r
(a1, . . . , an) �= 0 if and only if (a) > =∑n
i=1 ai is even and (b) for any subset I ⊂ {1, . . . , n} with n− |I | odd,

>− (n− 1)
 ≤
∑
i∈I

(2ai − 
).

Observe that, for a given weight datum, the left-hand side of this expression is
fixed and the right-hand side is minimized by summing over all weights such that
2ai < 
.

The next result shows that, when k = 
, we get the same birational model as in
the case k = 1.

Proposition 5.2. We have the following equalities between conformal block
divisors:

D(sl2, 
, 
ωn
1 ) = 
D(sl2,1,ωn

1 ) =



k
D(sl2k , 1,ωn

k ).

Proof. The second assertion is a direct application of [GiG, Prop. 5.1], which
states that

D(slr ,1, (ωz1, . . . ,ωzn)) =
1

k
D(slrk ,1, (ωkz1, . . . ,ωkzn)).

For the first assertion, let D = D(sl2, 
, 
ωn
1 ). It suffices to consider intersec-

tion numbers of D with F-curves of the form Fi = Fn−i−2,i,1,1. Then

D · Fi1,i2,i3,i4 =
∑
�u∈P 4




deg
(
V(sl2, 
, (u1ω1, u2ω1, u3ω1, u4ω1))

) 4∏
k=1

r
(

ik, t),

where P
 = {0,1, . . . , 
}. When i3 = i4 = 1, we may use the two-point fusion rule
for sl2 to obtain

D · Fi =
∑

0≤u1,u2≤

deg

(
V(sl2, 
, (u1ω1, u2ω1, 
ω1, 
ω1))

)
r
(


n−i−2, u1)r
(

i, u2).

By the case I = {n} if n is even and I = ∅ if n is odd in Lemma 5.1, we see that
r
(


j, t) = 0 if 0 < t < 
. Hence

D · Fi =
∑

u1,u2=0,


deg
(
V(sl2, 
, (u1ω1, u2ω1, 
ω1, 
ω1))

)
r
(


n−i−2, u1)r
(

i, u2).

But by [Fa, Prop. 4.2],

deg
(
V(sl2, 
, (0, 0, 
ω1, 
ω1))

) = deg
(
V(sl2, 
, (0, 
ω1, 
ω1, 
ω1))

) = 0

and deg
(
V(sl2, 
, (
ω1, 
ω1, 
ω1, 
ω1))

) = 
. Thus

D · Fi = 
r
(

n−i−2, 
)r
(


i, 
).
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It therefore suffices to show that r
(
t, 
) = r
(1t, 1), but this follows by induction
via the factorization rules and the propagation of vacua.

For the majority of values of k such that 1 < k < 
, the divisor D(sl2, 
, kωn
1 )

appears to give a map to a Hassett space. To establish our evidence for this, we
begin with the following lemma.

Lemma 5.3. Suppose that 1 < k < 
. Then r
(k i, t) = 0 if and only if either
ki + t is odd or one of the following holds:

(i) 2k ≤ 
 and i < max
{
t
k
, 2− t

k

};
(ii) 2k > 
, i is even, and i < max

{
t


−k , 2− t

−k

};
(iii) 2k > 
, i is odd, and i < max

{

−t

−k , 2− 
−t


−k
}
.

Proof. Each of (i)–(iii) follows from the case-by-case analysis of Lemma 5.1 and
the remark that follows it.

We now consider which Sn-invariant F-curves have trivial intersection with the
divisors in question.

Proposition 5.4. Suppose that 1 < k < 3
4
, and let D = D(sl2, 
, kωn

1 ). Assume
that n is even and that 
 ≤ kn

2 − 1. (Recall that, by Remark 4.7, this assumption
is necessary for the nontriviality of D.) If a ≤ b ≤ c ≤ d, then D · Fa,b,c,, d = 0
if and only if a + b + c ≤ 
+1

k
.

Proof. By [Fa, Prop. 4.7], the map associated to D factors through the map M0,n→
M0,

(
k

+1

)n . Therefore, if a+ b+ c ≤ 
+1
k

then D ·Fa,b,c,d = 0. Hence it suffices to

show the converse. We assume throughout that a + b + c > 
+1
k
.

By [Fa, Prop. 2.7], we have

D · Fa,b,c,d =
∑
�u∈P 4




deg
(
V(sl2, 
, (u1ω1, u2ω1, u3ω1, u4ω1))

)
× r
(ka, u1)r
(k

b, u2)r
(k
c, u3)r
(k

d, u4).

Since each term in this sum is nonnegative, it is enough to show that a single term
is nonzero.

We first consider the case that 2k ≤ 
. Set

wa =
{

min{ka, 
} if ka ≡ 
 (mod 2),

min{ka, 
− 1} if ka �≡ 
 (mod 2).

Note that, by assumption, both k(a+b+c+d) = kn and k(a+b+c)+
 are strictly
greater than 2
+ 1. So it is straightforward to check that wa + wb + wc + wd >

2
 and 
 + 1 > wd. Note further that 2
 + 2 + 2wa > 2wa + wc + wd and
2wa ≥ 4. Hence there is an integer w ′b such that w ′b ≡ wb (mod 2) and 2
 <
wa+w ′b+wc+wd < 2
+2+2wa. Thenwa+w ′b+wc+wd ≡ wa+wb+wc+wd ≡
k(a+b+c+d) ≡ 0 (mod 2). Thus deg

(
V(sl2, 
, (waω1,w ′bω1,wcω1,wdω1))

) �=
0 by [Fa, Prop. 4.2]. It therefore suffices to show that r
(ka,wa) �= 0. In this case,
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however, Lemma 5.3 tells us that r
(ka,wa) = 0 only if a < max{wa/k, 2 −
wa/k} ≤ max{a, 2}, which is possible only if a = 1. But then wa = k, so
r
(k

a,wa) = r
(k, k) = 1 �= 0 by the two-point fusion rule. Therefore, r
(ka,wa)

is always nonzero.
We next consider the case 2k > 
. Since here 
+1

k
< 3, we must show that no

F-curves are contracted. Set

wa =
{
k if a is odd,

2(
− k) if a is even.

Again we have that 
 + 1 > max{wa ,wb,wc,wd}, 2
 < wa + wb + wc + wd <

2
 + 2 + 2 min{wa ,wb,wc,wd}, and wa + wb + wc + wd ≡ 0 (mod 2). Thus
deg

(
V(sl2, 
, (waω1,wbω1,wcω1,wdω1))

) �= 0 by [Fa, Prop. 4.2]. If a is odd,
we see that r
(ka,wa) = 0 if and only if a < 1. If a is even, we see that r
(ka,wa) =
0 if and only if a < 2. It follows that no F-curves are contracted.

By Proposition 5.4, the F-curves that have trivial intersection with D(sl2, 
, kωn
1 )

are precisely those that are contracted by the morphismρ(
k

+1

)n : M0,n→ M0,
(
k

+1

)n .
However, this is not enough to conclude that D(sl2, 
, kωn

1 ) is actually the pull-
back of an ample divisor from this Hassett space, although this would follow from
a well-known conjecture (see [KeMc, Ques. 1.1]).

Theorem 5.5. Assume that n is even, 1 < k < 3
4
, and 
 ≤ kn

2 − 1. If the
F-Conjecture holds (see [KeMc, Ques. 1.1]), then the divisor D(sl2, 
, kωn

1 ) is the
pullback of an ample class via the morphism ρ(

k

+1

)n : M0,n → M0,
(
k

+1

)n . In par-
ticular, if 
+1

3 < k < 3
4
 then D is ample.

We note further that Proposition 5.4 does not cover all of the possible cases of
symmetric-weight sl2 conformal block divisors. In particular, if k ≥ 3

4
 then
D(sl2, 
, kωn

1 ) may have trivial intersection with an F-curve when all of the legs
contain an even number of marked points. Such is the case, for example, with the
divisor D(sl2, 4, 3ω8

1), which has zero intersection with the F-curve F(2, 2, 2, 2)
and positive intersection with every other F-curve. It is not difficult to see that
the associated birational model is the Kontsevich–Boggi compactification of M0,8

(see [GiJM, Sec. 7.2] for details on this moduli space).

5.2. Birational Properties of slr Conformal Blocks

In every known case, the birational model associated to conformal block divisors
is in fact a compactification of M0,n. That is, the associated morphism restricts to
an isomorphism on the interior. We pose this as a conjecture.

Conjecture 5.6. If D is a nontrivial conformal block divisor of slr with strictly
positive weights, then D separates all points on M0,n. More precisely: for any two
distinct points x1, x2 ∈M0,n, the morphism

H 0(M0,n, D)→ D|x1 ⊕ D|x2

is surjective.
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If true, this conjecture would have several interesting consequences. Among them
is the following simple description of the maps associated to conformal block di-
visors. Let D be a conformal block divisor of slr and let ρD : M0,n → X be the
associated morphism. Consider a boundary stratum

m∏
i=1

M0,ki ↪→ M0,n.

By factorization (see [Fa, Prop. 2.4]), the pullback of an slr conformal block
divisor to M0,km and its interior M0,km is an effective sum of slr conformal block
divisors. If all of the divisors in this sum are trivial, then the restriction of ρD to
this boundary stratum forgets a component of the curve:∏m

i=1 M0,ki
��

��

M0,n

ρD

��∏m−1
i=1 M0,ki

�� X .

If the only nontrivial divisors in this sum have weight 0 on some subset of the
attaching points, then these divisors are pullbacks of nontrivial conformal block
divisors via the map that forgets these points. Therefore, the restriction of ρD to
this boundary stratum forgets these attaching points:

M0,ki
��

��

M0,n

ρD

��

M0,ki−j �� X .

Finally, if any of the nontrivial conformal block divisors in this sum has strictly
positive weights, then (by Conjecture 5.6) the restriction of ρD to the interior of
this stratum is an isomorphism:

M0,ki
��

∼=
��

M0,n

ρD

��

M0,ki
�� X .

In summary, Conjecture 5.6 implies that the image of a boundary stratum∏m
i=1 M0,ki in X is isomorphic to

a∏
i=1

M0,ki ×
b∏

i=a+1

M0,ki−ji

for some 1≤ a ≤ b ≤ n and 1≤ ji ≤ ki − 3.
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In this way, the morphisms associated to slr conformal blocks are reminiscent
of Smyth’s modular compactifications [Sm]. Each of those compactifications can
be described by assigning, to each boundary stratum, a collection of “forgotten”
components. In a similar way, the morphism ρD appears to assign to each bound-
ary stratum a collection of forgotten components and forgotten points of attach-
ment. It follows that, if Conjecture 5.6 holds, one can understand the morphism
ρD completely from such combinatorial data.
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