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COMPLETIONS OF UFDs WITH SEMI-LOCAL FORMAL FIBERS

David Jensen
Department of Mathematics, University of Texas at Austin, Austin, Texas, USA

Let �T�M� be a complete local ring such that �T/M� = �T �. Given a finite set of
incomparable nonmaximal prime ideals C of T , we provide necessary and sufficient
conditions for T to be the completion of a local UFD A, whose generic formal fiber
is semilocal with maximal ideals the elements of C. We also show that, given the T

above, we can find necessary and sufficient conditions for T to be the completion of a
UFD, whose formal fiber over a height one prime ideal is semilocal.
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1. INTRODUCTION

Because of Cohen’s structure theorems, the structure of complete local
rings is well known. The properties of the relationship between a local ring and
its completion, however, are not as well understood. By making sense of this
relationship, we can better comprehend local rings in general. A typical goal of
research in this field is to characterize the completions of rings with certain special
properties. In Lech (1986), it is shown that a complete local ring �T�M� is the
completion of a local integral domain if and only if

1. unless M = �0�, M is not an associated prime ideal of T , and
2. no integer of T is a zerodivisor.

Similarly, in Heitmann (1993), the author provides necessary and sufficient
conditions for a ring to be the completion of a unique factorization domain (UFD).

Theorem 1.1 (Heitmann, 1993). Let T be a complete local ring. Then T is the
completion of a UFD if and only if it is a field, a discrete valuation ring (DVR), or has
depth at least two and no integer of T is a zero divisor.
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Among the important aspects of the relationship between a local ring and its
completion are the formal fibers of the ring. If A is a local ring with maximal ideal
M and P is a prime ideal of A, we define the formal fiber of A at P to be Spec�Â⊗A

k�P��, where Â is the M-adic completion of A, and k�P� = AP/PAP . Because there
is a one-to-one correspondence between the elements of the formal fiber of A at
P and the inverse image of P under the map Spec Â → SpecA, we often think of
the formal fiber of A at P as the inverse image of P under the map Spec Â →
Spec A. If A is an integral domain, we call the formal fiber of A at the zero ideal
the generic formal fiber of A. If the ring Â⊗A k�P� is semilocal with maximal ideals
Q1 ⊗A k�P�� � � � � Qn ⊗A k�P�, we say that the formal fiber of A at P is semilocal with
maximal ideals Q1� � � � � Qn. In Charters and Loepp (2004), the authors characterize
those rings that are completions of integral domains with semilocal generic formal
fiber. Specifically, they provide necessary and sufficient conditions on a complete
local ring T and a set of prime ideals G of T with finitely many maximal elements
for the existence of a local domain A that completes to T and has semilocal generic
formal fiber G.

Theorem 1.2 (Charters and Loepp, 2004). Let �T�M� be a complete local ring and
G ⊆ Spec T such that G is nonempty and the number of maximal elements of G is finite.
Then there exists a local domain A that completes to T and has generic formal fiber
exactly G if and only if T is a field and G = ��0��, or the following conditions hold:

1. M � G, and G contains all of the associated prime ideals of T ;
2. If Q ∈ G and P ∈ Spec T with P ⊆ Q, then P ∈ G;
3. If Q ∈ G then the intersection of Q with the prime subring of T is �0�.

Notice that, if T satisfies Lech’s conditions, then the set of associated primes
of T satisfies the conditions on G in the theorem above. We therefore obtain the
surprising result that every completion of an integral domain is the completion of
an integral domain with semilocal generic formal fiber.

The main body of this article focuses on combining the two results above.
Specifically, we want to know when the domain A in Theorem 1.2 can be forced to
be a UFD. Some progress toward this goal has already been made. Loepp (1997)
provides the following result.

Theorem 1.3 (Loepp, 1997). Let �T�M� be a complete local domain of dimension at
least two, satisfying Serre’s (S2) condition and �T/M� = �T �. Let �P1� � � � � Pn� be a set
of nonzero prime ideals of T such that for every j, Pj �= M , Pj∩ the prime subring of
T = �0�, and Pi � Pj when i �= j. Then there exists a local UFD A such that Â = T and
the generic formal fiber of A is semilocal with maximal ideals �P1� � � � � Pn�.

In Section 2, we prove the main result. This theorem characterizes those local
rings �T�M� satisfying the condition that �T/M� = �T � that are the completion of
a UFD with semilocal generic formal fiber. Though the proof mainly follows the
proof of Theorem 1.3, it is an improvement on this result because it does not require
T to be an integral domain or that T satisfy Serre’s (S2) condition. In particular, we
prove the following theorem.
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Theorem 1.4. Let �T�M� be a complete local ring and �T/M� = �T �. Let G ⊆ Spec T
such that G is nonempty and has a finite number of maximal elements. Then there exists
a local UFD A such that Â = T and the generic formal fiber of A is exactly G if and
only if T is a field or DVR and G = ��0��, or T has depth at least two and the following
conditions hold:

1. M � G, and G contains all of the associated prime ideals of T ;
2. If Q ∈ G and P ∈ Spec T such that P ⊆ Q, then P ∈ G;
3. If Q ∈ G, then the intersection of Q with the prime subring of T is �0�;
4. If J ∈ Spec T such that ht�J� > depth�TJ� = 1, then J ∈ G.

We also investigate the question of which rings satisfy the conditions of the
theorem above. In particular, we show that the set of prime ideals J described in
condition (4) is contained in a finite set of nonmaximal prime ideals if and only if
T has no embedded associated primes ideals. This gives us the result that, if T is a
complete local ring such that �T/M� = �T �, then T is the completion of UFD with
semilocal generic formal fiber if and only if it is the completion of a UFD and has
no embedded associated primes.

In Section 3, we extend this result so that the height of the ideal in A that has
semilocal formal fiber is one. In other words, instead of constructing our UFD A to
have a specified semilocal generic formal fiber, we construct it so that it contains a
height one prime ideal with specified semilocal formal fiber.

In this article, we use the term local ring to describe a Noetherian ring with
one maximal ideal. A ring with one maximal ideal that is not necessarily Noetherian
is called quasi-local.

2. SEMI-LOCAL GENERIC FORMAL FIBERS

In this section, we provide necessary and sufficient conditions on a complete
local ring �T�M� with �T/M� = �T � for it to be the completion of a UFD with
semilocal generic formal fiber. To show that out conditions are necessary is not
difficult. The sufficiency of our conditions can be proven by construction, following
the construction in Loepp (1997). In fact, the proof follows, once it is shown that
we can weaken the conditions on T in Lemma 12 of that article.

In order to ensure that the ring A we construct is a unique factorization
domain, we need to build subrings of T with special properties. These rings are
called N -subrings. The definition comes from Heitmann (1993).

Definition 1. Let �T�M� be a complete local ring and let �R�M ∩ R� be a
quasi-local unique factorization domain contained in T , satisfying the following
conditions:

1. �R� ≤ sup�ℵ0� �T/M��, with equality only if T/M is countable;
2. Q ∩ R = �0� for all Q ∈ Ass T ;
3. if t ∈ T is regular and P ∈ Ass�T/tT�, then ht�P ∩ R� ≤ 1.

Then R is called an N -subring of T .

Now we are ready to prove the analogous result to Lemma 12 in Loepp (1997)
under our weaker assumptions.
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Lemma 2.1. Let �T�M� be a complete local ring of dimension at least two, and
Q ∈ Spec T . Let G ⊆ Spec T have maximal elements �P1� P2� � � � � Pn� such that G
satisfies the following conditions:

1. M � G, and G contains all of the associated prime ideals of T
2. If P ∈ G and I ∈ Spec T such that I ⊆ P, then I ∈ G
3. If J ∈ Spec T such that ht�J� > depth�TJ� = 1, then J ∈ G.

Suppose R is an N-subring such that P ∩ R = �0� for every P ∈ G. Then there
exists an N-subring S such that R ⊆ S ⊆ T , P ∩ S = �0� for every P ∈ G, �S� ≤
sup�ℵ0� �R��, and Q � G implies Q ∩ S �= �0�. Furthermore, prime elements in R remain
prime in S.

Proof. Let C = �P1� � � � � Pn� ∪ �P ∈ Ass�T/rT� � 0 �= r ∈ R�. Suppose Q ∈ C. Then
we can take S = R, because, if Q ∈ Ass�T/rT�, then r ∈ Q ∩ R, so Q ∩ R �= �0�, and
we do not need to do anything if Q ∈ G. So, assume that Q � C. Note that if P ∈
�P ∈ Ass�T/rT� � 0 �= r ∈ R�, then either P ∈ G or ht P = 1. If ht P = 1 and Q ⊂ P
with Q �= P, then Q ∈ Ass T , and by condition (1), Q ∈ C. If P ∈ G and Q ⊂ P, then
by condition (2), Q ∈ C. This contradicts our assumption, so we have that Q � P
for every P ∈ C.

Now, for P ∈ Spec T , define D�P� to be a full set of coset representatives of the
cosets t + P which are algebraic over R/�R ∩ P� as an element of T/P. Note that as
�R/�R ∩ P�� ≤ �R�, the algebraic closure of R/�R ∩ P� in T/P has cardinality at most
sup�ℵ0� �R��. Hence, �D�P�� ≤ sup�ℵ0� �R��. Letting D = ⋃

P∈C D�P�, we use Lemma 2
in Loepp (1997) if R is countable, and Lemma 3 in Loepp (1997) if not, to find
a t ∈ Q with t � �P + r �P ∈ C� r ∈ D�. We claim that S = R�t�R�t�∩M is the desired
subring. Clearly, we have S ∩Q �= �0�. Now, by the way t was chosen, t + P is
transcendental over R/�R ∩ P� for all P ∈ C. So, Lemma 11 in Loepp (1997) shows
that S is an N -subring, �S� = sup�ℵ0� �R��, and prime elements of R are prime in S.
All that is left to show is that S ∩ P = �0� for all P ∈ G.

It suffices to show that R�t� ∩ P = �0� for P a maximal element of G. Suppose
that f = ant

n + · · · + a1t + a0 ∈ P with ai ∈ R. Now, by the way t was chosen, t + P
is transcendental over R/�R ∩ P� for all P ∈ G ⊆ C. Hence, ai ∈ P for every i. So
ai ∈ R ∩ P = �0�. Therefore f = 0, and we have that R�t� ∩ P = �0�. This completes
the proof. �

We may now employ Lemmas 13–16 in Loepp (1997) to construct our UFD A.
It can be verified that the same construction works under these assumptions, and it
is unnecessary to repeat the proof here.

Note that we need �T/M� = �T � in order to use Lemma 15 in Loepp (1997). It
is because of this that we need this condition in our final theorem. If it were not for
this condition, the main result of this section would be a complete characterization
of completions of UFDs with semilocal generic formal fiber. As it is, however, we
can only characterize those rings for which �T/M� = �T �.

Here we prove the main theorem.

Theorem 2.2. Let �T�M� be a complete local ring and �T/M� = �T �. Let G ⊆ Spec T
such that G is nonempty and has a finite number of maximal elements. Then there exists
a local UFD A such that Â = T and the generic formal fiber of A is exactly G if and
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only if T is a field or DVR and G = ��0�� or T has depth at least two and the following
conditions hold:

1. M � G, and G contains all of the associated prime ideals of T ;
2. If Q ∈ G and P ∈ Spec T such that P ⊆ Q then P ∈ G;
3. If Q ∈ G then the intersection of Q with the prime subring of T is �0�;
4. If J ∈ Spec T such that ht�J� > depth�TJ� = 1, then J ∈ G.

Proof. First, we prove the forward direction. Suppose that there exists a local
UFD A such that Â = T and the generic formal fiber of A is exactly G. From
Theorem 1.1 we know that T must be a field, a DVR, or a ring of depth at least
two. If T is a field or DVR, we know from Theorem 1.2 that G = ��0��. Otherwise,
we know from Theorem 1.2 that conditions (1)–(3) must hold. So all we have to
show is the necessity of condition (4).

So suppose that J ∈ Spec T such that ht�J� > depth�TJ � = 1, and J � G. First,
we will show that J ∩ A has height one.

Note that, since J � G, J ∩ A �= �0�. Let a ∈ J ∩ A, a �= 0. As TJ is depth
one and a is regular, the ring TJ/�aTJ� consists only of zero divisors and units.
Hence, JTJ ∈ Ass�TJ/aTJ�. By the Corollary to Theorem 6.2 in Matsumura (1989),
we have J ∈ Ass�T/aT�. Now, suppose that J ∩ A � Ass�A/aA�. Note that, as A is
a UFD, A/aA has no embedded associated primes, so J is not contained in any
of the associated primes of A/aA. Then there exists an element j ∈ J ∩ A, j � aA
such that j is regular in A/aA. This means that j is regular on T/aT , because
completion preserves regular elements, so J � Ass�T/aT�. This is a contradiction, so
we know that J ∩ A ∈ Ass�A/aA�. It follows from Serre’s (S2) condition, that J ∩ A
is height one.

Specifically, J ∩ A must be principal, so J ∩ A = aA for some nonzero a ∈ A.
Now, let I ∈ Spec T . If I ⊆ J and I � G, then I ∩ A = aA as well. We will therefore
have a contradiction if we can prove the existence of a prime ideal I such that I ⊆ J ,
I � G, and a � I .

Let C be the set containing the minimal associated primes of aT and the
maximal elements of G. Note that J � Q for all Q ∈ C. So, by prime avoidance,
there exists a c ∈ J such that c � Q for all Q ∈ C. Because c ∈ J , we know that J
contains a height one prime containing c. We will call this ideal I .

We know that I ⊆ J . Because c ∈ I and c � Q for all Q ∈ G, we have that
I � G. Also, because c ∈ I and c � Q for all minimal associated primes Q of aT , we
have that I is not a minimal associated prime of aT . The minimal associated primes
of aT are precisely the height one primes that contain a. I is height one but not a
member of this set, so a � I . Thus, I is the desired ideal. This is a contradiction, so
it follows that J ∈ G.

Now, the backward direction. If T is a field or a DVR and G = ��0��, A = T
is the desired ring. Otherwise, if T has depth at least two, we use the Lemma 3.2
together with Lemmas 13–16 in Loepp (1997) to construct the desired UFD A. �

It is natural to ask what sorts of rings satisfy the conditions in the theorem
above. Specifically, for what rings is the set �J ∈ Spec T �ht�J� > depth�TJ � = 1�
contained in a finite set of nonmaximal prime ideals? The following corollary
provides the answer.
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Corollary 2.3. Let �T�M� be a complete local ring and �T/M� = �T �. Then T is the
completion of a UFD A with semilocal generic formal fiber if and only if T is a field, a
DVR, or has depth at least two, no integer of T is a zerodivisor, and T has no embedded
associated prime ideals.

Proof. Suppose that T is the completion of a UFD A with semilocal generic formal
fiber G. From Heitmann (1993), we know that T must be a field, a DVR, or have
depth at least two and no integer of T is a zerodivisor. Now, let P ∈ Ass T with
ht�P� > 0, and let Q be a prime ideal containing P such that ht�Q� = ht�P�+ 1.
Note that depth�TQ� is either zero or one. But if depth�TQ� = 0, then Q ∈ Ass T , so
by the theorem above, Q ∈ G. If depth�TQ� = 1, then, since ht�Q�=ht�P�+ 1> 1,
by the theorem above, Q ∈ G. It follows that every prime ideal containing P of
height ht�P�+ 1 is an element of G, but this set canot be contained in a finite set
of nonmaximal prime ideals. Therefore, no such P can exist, so T has no embedded
associated prime ideals.

Now, suppose that T is a field, a DVR, or has depth at least two, no integer
of T is a zerodivisor, and T has no embedded associated prime ideals. Let P ∈
Spec T such that ht�P� > depth�TP� = 1. Then P is an element of the non-Cohen-
Macaulay locus, �P ∈ Spec T �ht�P� > depth�TP��, so in particular, P contains a
minimal member Q of the non-Cohen-Macaulay locus. There are no height zero
primes in the non-Cohen Macaulay locus, so ht�Q� ≥ 1. Since T has no embedded
associated primes, there must therefore be a regular element a ∈ Q. Then, since
a ∈ P and depth�TP� = 1, P ∈ Ass�T/aT�, a finite set. It follows that, for every
minimal member Q of the non-Cohen-Macaulay locus, there are a finite number
of prime ideals P containing Q with depth�TP� = 1. Now, since T is a complete
local ring and therefore excellent, the non-Cohen-Macaulay locus of T is closed,
meaning that it has a finite number of minimal elements. We therefore have that
�P ∈ Spec T �ht�P� > depth�TP� = 1� is a finite set. We now let G = Ass T ∪ �Q ∈
Spec T �Q ⊆ P� where P ∈ Spec T such that ht�P� > depth�TP� = 1�, which satisfies
all the conditions on G in the preceding theorem. T is therefore the completion of
a UFD A with semilocal generic formal fiber equal to G. �

This next corollary is the version of the above theorem when we want the
generic formal fiber of A to be local (rather than semilocal).

Corollary 2.4. Let �T�M� be a complete local ring and �T/M� = �T �. Let P ∈ Spec T .
Then there exists a local UFD A such that Â = T and the generic formal fiber of A is
local with maximal ideal P if and only if T is a field or DVR and P = �0�, or T has
depth at least two and the following conditions hold:

1. P is nonmaximal and contains all of the associated prime ideals of T ;
2. The intersection of P with the prime subring of T = �0�;
3. If J ∈ Spec T such that ht�J� > depth�TJ � = 1, then J ⊆ P.

The following example is due to our informal correspondence with Ray
Heitmann. We thank him for suggesting it.

Example 2.5. Let T = ���x3� x2� xy� y� z�� and P = �x3� x2� xy� y�. Does there exist
a local UFD A such that Â = T and the generic formal fiber of A is local with
maximal ideal P?



COMPLETIONS OF UFDs 353

First, note that T/M is isomorphic to �, so �T/M� = �T �. Also, as �y� z� is a
regular sequence in T� T has depth two. Since T is an integral domain and therefore
has no embedded associated primes, we know that T is the completion of a UFD
with semi-local generic formal fiber, but in this case we can actually show more. We
know that P is nonmaximal because z � P, and since T is an integral domain, P
contains all of the associated prime ideals of T . The prime subring of T contains
only units, so P∩ the prime subring of T = �0�. All that remains to be shown is
condition (3).

Note that P itself has height greater than one, because �0� ⊂ �xy� y� ⊂ P, and
also that P ∈ Ass�T/xyT�. This is not a problem because P will be in the generic
formal fiber of A.

It can be seen that, if t ∈ P, then all of the associated primes of T/tT will
be contained in P. This is because t may be seen as an element of the ring
���x3� x2� xy� y��, and adjoining the indeterminate z will not alter the associated
primes of �t� in this ring.

Let a be a regular element in T with a � P, and let J ∈ Ass�T/aT�. We
want to show that ht�J� ≤ 1. Because TJ must have depth one, we know that J
is nonmaximal. Also, because a ∈ J and a � P, we know that J �= P. As P and
the maximal ideal are the only two prime ideals in T that contain all four of the
elements x3� x2� xy, and y, it follows that one of these four is not an element of J .
Now consider TJ . We will show that x3/x2 = xy/y ∈ TJ in every case. If x3 � J , then
x4/x3 = x3/x2 ∈ TJ . If x

2 � J , then x3/x2 ∈ TJ . If xy � J , then x2y/xy = xy/y ∈ TJ .
If y � J , then xy/y ∈ TJ . Because of this, the map h 	 ���x� y� z�� → TJ given by
x → x3/x2� y → y/1� z → z/1 is well defined.

Now, letting g 	 T → ���x� y� z�� be the inclusion map, we satisfy the
conditions of Theorem 4.3 in Matsumura (1989). Thus, TJ = ���x� y� z��Q, where
Q = JTJ ∩���x� y� z��. This means that TJ is a regular local ring, and so the depth
of TJ is equal to its dimension. As TJ has depth one, it follows that ht�J� = 1.
Therefore, there exists a local UFD A such that Â = T and the generic formal fiber
of A is local with maximal ideal P.

Using these corollaries, it is easy to determine whether a given ring is the
completion of a UFD with semilocal generic formal fiber, but much harder to
determine whether it is the completion of a UFD with generic formal fiber equal
to a given set of prime ideals. It should be noted that, of all the conditions in the
main theorem, the last one is by far the most difficult to check. Fortunately, in any
ring that satisfies Serre’s (S2) criterion, every choice of prime ideals G (or prime
ideal P in the local case) will meet this condition trivially. The example above is one
where the condition is non-trivial but still satisfied. It appears that, in such rings,
our choice of the prime ideal P is extremely limited. (There was only one option for
P in the example given.)

3. SEMI-LOCAL FORMAL FIBERS AT HEIGHT ONE PRIME IDEALS

In this section, we control the height of the ideal in ourUFDA that has semilocal
formal fiber. In particular, we will provide necessary and sufficient conditions on a
complete local ring �T�M� with �T/M� = �T � for it to be the completion of a UFD
containing a height one prime ideal with semilocal formal fiber.
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Although we again follow the construction in Loepp (1997), here there is
more to show. Specifically, we must show that we can extend both Theorem 6 and
Lemma 12 in that article to the height one case. The rest of the construction follows.

From Proposition 1 in Heitmann (1993), in order to make A complete to T ,
we must have IT ∩ A = I for every finitely generated ideal I of A. The following
lemma helps us get this condition. It is an extension of Theorem 6 in Loepp (1997).

Lemma 3.1. Let �T�M� be a complete local ring and G a finite set of non-maximal
prime ideals of T . Let R be an N-subring of T such that R ∩ P = 
R for every P ∈ G.
Let I be a finitely generated ideal of R with c ∈ IT ∩ R. Then there exists an N -subring
S of T such that R ⊆ S ⊆ T� �S� = �R�� c ∈ IS, and S ∩ P = 
S for every P ∈ G. Also,
prime elements in R remain prime in S.

Proof. Except for the fact that S ∩ P = 
S for every P ∈ G, Lemma 9 in Loepp
(1997) proves this result. We must therefore simply verify that that this condition
holds for the ring S constructed in Loepp (1997). Let m be the number of generators
of I . Lemma 9 in Loepp (1997) is proven by induction on m. There it is shown that
we can reduce to the case where I is not contained in a height one prime ideal of R,
and so we may begin with the m = 2 case. Here, we let I = �y1� y2�R and notice that,
for every P ∈ G, either y1 � P or y2 � P. We then find elements x1� x2 ∈ T such that
x1 + P is transcendental over R/�R ∩ P� for all P ∈ G such that y2 � P and similarly,
x2 + P is transcendental over R/�R ∩ P� for all P ∈ G such that y1 � P. We then let
S = �R�x1� y

−1
2 � ∩ R�x2� y

−1
1 ���R�x1�y−1

2 �∩R�x2�y−1
1 ��∩M .

We must show that S ∩ P = 
S for every P ∈ G. Let P ∈ G. Without loss of
generality, assume that y1 � P. Now, let f = rn�x2�

n + · · · + r1�x2�+ r0 ∈ R�x2� ∩ P.
Because x2 + P is transcendental over R/�R ∩ P�, it follows that ri ∈ R ∩ P = 
R
for all i. Hence, f ∈ 
R�x2�, and so R�x2� ∩ P ⊆ 
R�x2�. Furthermore, because

 ∈ R�x2� ∩ P, we have R�x2� ∩ P = 
R�x2�. Clearly, then, we have R�x2� y

−1
2 � ∩ P =


R�x2� y
−1
1 �. Now let’s look at R�x1� y

−1
2 �. If y2 � P, then we have x1 + P is

transcendental over R/�R ∩ P�, and so R�x1� y
−1
2 � ∩ P = 
R�x1� y

−1
2 � for the same

reason as above. If, however, y2 ∈ P, then y2 ∈ 
R, so y2 = 
r for some r ∈ R. Now,
because 
�ry−1

2 � = 1� 
 is a unit in R�x1� y
−1
2 �, and so 
R�x1� y

−1
2 � = R�x1� y

−1
2 �.

It follows that P ∩ �R�x2� y
−1
1 � ∩ R�x1� y

−1
2 �� ⊆ 
R�x2� y

−1
1 � ∩ 
R�x1� y

−1
2 � =


�R�x2� y
−1
1 � ∩ R�x1� y

−1
2 ��. And, since 
R�x2� y

−1
1 � ⊆ P. we have P = 
�R�x2� y

−1
1 � ∩

R�x1� y
−1
2 ��. Thus, after localization, we have S ∩ P = 
S. So, if I is generated by 2

elements, the theorem holds.
Now, assume that m > 2. Lemma 9 in Loepp (1997) shows how to construct

an N -subring R′ with R ⊆ R′ ⊆ T , containing an element c∗ ∈ R′ and an �m− 1�
generated ideal J of R′ with c∗ ∈ JT . We need to show that R′ ∩ P = 
R′ for all
P ∈ G. By induction, there will therefore exist an N -subring S such that R′ ⊆ S ⊆
T� c∗ ∈ JS and S ∩ P = 
S for all P ∈ G. Then, we will show that c ∈ IS.

Let I = �y1� � � � � ym�R and define J = �y1� � � � � ym−1�R. Lemma 9 in Loepp
(1997) shows that there exists an element t ∈ T such that t + P is transcendental
over R/�R ∩ P� as an element of T/P for every P ∈ G with �y1� � � � � ym−1� � P. Let
R′ = R�t�M∩R�t�.

Because P ∩ R is height one, we have that �y1� � � � � ym−1� � P. This means
that t + P is transcendental over R/�R ∩ P� as an element of T/P for every P ∈ G.
So, if f = rnt

n + · · · + r1t + r0 ∈ R�t� ∩ P, it follows that ri ∈ R ∩ P = 
R for all i.
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Thus, f ∈ 
R�t�, so R�t� ∩ P = 
R�t�. This is enough to get R′ ∩ P = 
R′. The rest of
the theorem follows from Loepp (1997). �

The following lemma allows us to adjoin elements from prime ideals not
contained in Qi without increasing the height of Qi ∩ R. It is an extension of
Lemma 12 in Loepp (1997).

Lemma 3.2. Let �T�M� be a complete local ring of dimension at least two and R
an N -subring of T . Let C = �Q1� � � � � Qn� be a finite set of incomparable prime ideals
satisfying the following conditions:

1. M � C;
2. There exists a nonzero element 
 ∈ R such that Qi ∩ R = 
R for all i;
3. If P ∈ Ass�T/
T�, then P ⊆ Qi for some i.

Let I ∈ Spec T with 
 ∈ I and such that I � Qi for all i. Then there exists an
N-subring S such that R ⊆ S ⊆ T�Qi ∩ S = 
S for all i� �S� = sup�ℵ0� �R��, and 
S ⊂
I ∩ S where the containment is strict. Furthermore, prime elements in R remain prime
in S.

Proof. To begin with, we will show that I � J for all J ∈ �J ∈ Ass�T/rT� � 0 �=
r ∈ R�. Suppose that I ⊆ J where J is in this set. Then 
∈ J , but since depth�TJ �= 1,
J ∈ Ass�T/rT� for all regular r ∈ J . It follows that J ∈ Ass�T/
T�. This means that
J ⊆ Qi for some i, but, since I ⊆ J and I � Qi for any i, this is a contradiction. It
follows that I � J for all J ∈ �J ∈ Ass�T/rT� � 0 �= r ∈ R�.

Now, for P ∈ Spec T we define D�P� to be a full set of coset representatives
of t + P which are algebraic over R/�R ∩ P� as an element of T/P. Note that
as �R/�R ∩ P�� ≤ �R�, the algebraic closure of R/�R ∩ P� in T/P has cardinality
at most sup�ℵ0� �R��. Hence, �D�P�� ≤ sup�ℵ0� �R��. Now, let G = C ∪ Ass T ∪ �J ∈
Ass�T/rT� � 0 �= r ∈ R�. Note that, as 
 ∈ I and 
 is not a zerodivisor in T� I � Ass T .
It follows that I � P for every P ∈ G.

Letting D = ⋃
P∈G D�P�, we use Lemma 2 in Loepp (1997) if R is countable and

Lemma 3 in Loepp (1997) if not to find a t ∈ I with t � �P + r �P ∈ G� r ∈ D�. We
claim that S = R�t�R�t�∩M is the desired subring. Because t ∈ S ∩ I and t � Qi for all i,
we have 
S ⊂ I ∩ S where the containment is strict. Now, by the way t was chosen,
t + P is transcendental over R/�R ∩ P� for every P ∈ G.

Now, by Lemma 11 in Loepp (1997), S is an N -subring, �S� = sup�ℵ0� �R��,
and prime elements in R remain prime in S. All that is left to show is that S ∩Qi =

S for all i. Suppose that f�t� = ant

n + · · · + a1t + a0 ∈ Qi ∩ R�t� with aj ∈ R. Since
Qi ∈ G� t + P is transcendental over R/�R ∩Qi�, so aj ∈ Qi for every j. So aj ∈ R ∩
Qi = 
R, and therefore f�t� = 
rnt

n + · · · + 
r1t + 
r0 ∈ 
R�t�, so R�t� ∩Qi = 
R�t�.
S is just a localization of R, so S ∩Qi = 
S. This completes the proof. �

Again, we may use Lemmas 13–15 in Loepp (1997) to construct the desired
UFD A. All we have to check is that Qi ∩ R = 
R for each of the rings R used in this
construction, but this is not difficult. Theorem 16 in Loepp (1997), however, requires
the existence of an N -subring with certain nice properties. In that case, the prime
subring of T localized at its intersectionwithM satisfies the desired properties, but here
this subring will not work. The following lemma extends Theorem 16 in Loepp (1997).
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Lemma 3.3. Let �T�M� be a complete local ring of depth at least two such that
�T/M� = �T � and let S′ denote the prime subring of T . Let G = �Q1� Q2� � � � � Qn� be a
finite set of incomparable prime ideals of T such that the following conditions hold:

1. M � G;
2. No integer of T is a zerodivisor;
3. There exists a regular, nonzero element 
 ∈ T satisfying the following conditions:

(a) 
 ∈ ⋂n
i=1 Qi;

(b) if P ∈ Ass�T/
T�, then P ⊆ Qi for some i;
(c) In the case where Qi ∩ S′ = �0� for all i, if J ∈ Ass�T/rT� for some r such that

0 �= r ∈ S′, then 
 � J ;
(d) In the case where Qi ∩ S′ = pS′ for any i, there exists a � ∈ T such that p = 
�,

where if P ∈ Ass�T/�T�, then 
 � P and P � Qi for all i.

Then there exists a local UFD A and a height one prime ideal I of A such that
Â = T and the formal fiber of I is semilocal with maximal ideals the elements of G.
Furthermore, I ∩ A = 
tA for some unit t ∈ T .

Proof. If we can find an N -subring Ro ⊆ T such that R0 ∩Qi = 
R0 for all i,
Theorem 16 in Loepp (1997) shows how to recursively define a family of N -subrings
beginning with R0 whose union is the desired UFD. We now work to define R0.

Define S′ to be the prime subring of T and S to be S′
S′∩M . It is easy to see

that S is an N -subring of T . Note that, in the case where Qi ∩ S′ = pS′ for some
i, we have 
 ∈ ⋂n

i=1 Qi, so p = 
� ∈ ⋂n
i=1 Qi. Thus, either Qi ∩ S′ = �0� for all i, or

Qi ∩ S′ = pS′ for all i. Now suppose that S ∩Qi = �0� for every i. Let C = �P ∈
Ass�T/rT� � 0 �= r ∈ S� ∪ Ass T and, if P ∈ Spec T , define D�P� to be a full set of coset
representatives that make t + P algebraic over S/�S ∩ P�. Use Lemma 4 in Loepp
(1997) with D = ⋃

P∈C D�P� to find a unit t such that 
t � ∪�P + r �P ∈ C� r ∈ D�,
and let x = 
t. Note that 
tT = 
T , so if P ∈ Ass�T/xT�, then P ⊆ Qi for some i.

Now let R0 = S�x�S�x�∩M . Note that, since T has depth at least two, M � Ass T ,
so by Lemma 11 from Loepp (1997), R0 is an N -subring of T . Also, suppose
that f�x� = snx

n + · · · + s1x + s0 ∈ Qi for some i. Because f�x�− s0 ∈ xT ⊆ Qi, it
follows that s0 ∈ Qi. So s0 ∈ Qi ∩ S = �0�, so f�x� = snx

n + · · · + s1x ∈ xS�x�. Thus,
Qi ∩ R0 = xR0.

Otherwise, suppose that S ∩Qi = pS for some i. We must define R0 differently.
Let C1 = Ass�T/�T� ∪ Ass�T� and C2 = Ass�T/
T� ∪ Ass�T� ∪ �Qi � 1 ≤ i ≤ n�. Note
that, by assumption, 
 � P for all P ∈ C1. Because, for all P ∈ Ass�T/�T�� P � Qi for
all i, it follows that � � Qi for all i. Since for every P ∈ Ass�T/
T�� P ⊆ Qi, it follows
that � � P for all P ∈ C2. Let D�P� be a full set of coset representatives of the cosets
t + P that are algebraic over S/�S ∩ P� as an element of S/P. Now, by Lemma 4 in
Loepp (1997), letting D1 =

⋃
P∈C1

D�P� and D2 =
⋃

P∈C2
D�P� we can find a unit t ∈ T

such that 
t � ⋃
�P + r �P ∈ C1� r ∈ D1� and �t−1 � ⋃

�P + r �P ∈ C2� r ∈ D2�.
Now let R0 = S�
t� �t−1�S�
t��t−1�∩M . R0 clearly meets the cardinality condition

for N -subrings. Now, let P ∈ Ass T and assume that f = an�
t�
n + · · · + a1�
t�+

bm��t
−1�m + · · · + b1��t

−1�+ c ∈ P ∩ S�
t� �t−1�. Then �
t�mf = an�
t�
n+m + · · · +

a1�
t�
m+1 + bmp

m + · · · + b1p�
t�
m−1 + c�
t�m ∈ P ∩ S�
t� �t−1�. But 
t + P is

transcendental over S/�S ∩ P�, so ai� bip
i� c ∈ P ∩ S = �0�. It follows that

�
t�mf = 0. 
t is not a zerodivisor, so f = 0. Thus P ∩ S�
t� �t−1� = �0�, and, as
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R0 is simply a localization of this, we have P ∩ R0 = �0� for all P ∈ Ass T , so the
second condition of N -subrings holds.

Now let’s show that R0 is a UFD. Note that S�
t� �t−1� = S�
t� p/�
t��, and
when we adjoin 1/�
t�, we get S�
t� 1/�
t��, which is a UFD. So, if we can show that

t is prime in S�
t� p/�
t��, then by Theorem 20.2 in Matsumura (1989), S�
t� p/�
t��
will be a UFD. Let f = an�
t�

n + · · · + a1�
t�+ bm��t
−1�m + · · · + b1��t

−1�+ c ∈
Qi ∩ S�
t� �t−1� for some i. Then 
tT ⊆ Qi, so bm��t

−1�m + · · · + b1��t
−1�+ c ∈ Qi ∩

S�
t� �t−1�. But �t−1 +Qi is transcendental over S/�S ∩Qi�, so bi� c ∈ Qi ∩ S =
pS = �
t�t−1S�. It follows that f ∈ 
tS�
t� �t−1�, so Qi ∩ S�
t� �t−1� ⊆ 
tS�
t� �t−1�. It
follows that Qi ∩ S�
t� �t−1� = 
tS�
t� �t−1�. So 
t is prime in S�
t� �t−1� as desired.
Thus S�
t� �t−1� is a UFD. It follows that R0 is a UFD as well. Because R0 is just a
localization of S�
t� �t−1�, it follows that Qi ∩ R0 = 
tR0 for all i = 1� 2� � � � � n.

To complete the proof that R0 is an N -subring, we must show that ht�J ∩
R0� ≤ 1 for all J ∈ Ass�T/tT�, where t is a regular element of T . Let J be
such an ideal. Since S is an N -subring, ht�J ∩ S� ≤ 1. Suppose ht�J ∩ S� = 0.
Then, J ∩ S = �0�, and ht�J ∩ S�
t�� ≤ 1. Localizing cannot increase height, so
ht�J ∩ S�
t� 1/�
t��� ≤ 1. Now, if 
t ∈ J , then p ∈ J ∩ S and ht�J ∩ S� �= 0, so

t � J . Hence, when we adjoin 1/
t, the height of J is unaffected, so we have
ht�S�
t� p/�
t�� ∩ J� = ht�J ∩ S�
t� 1/�
t��� ≤ 1. So, in this case, ht�J ∩ R0� ≤ 1.

Now suppose that ht�J ∩ S� = 1. Then S ∩ J = pS, so p ∈ J , and, since J is
prime and p = 
�, either 
 ∈ J or � ∈ J . Since depth�TJ� = 1 and both 
 and � are
regular elements, either J ∈ Ass�T/
T� or J ∈ Ass�T/�T�. We can now consider two
cases, one where J ∈ Ass�T/
T�, and one where J ∈ Ass�T/�T�.

Suppose J ∈ Ass�T/
T� and let f = an�
t�
n + · · · + a1�
t�+ bm��t

−1�m + · · · +
b1��t

−1�+ c ∈ J ∩ S�
t� �t−1�. Then 
tT ⊆ J , so bm��t
−1�m + · · · + b1��t

−1�+ c ∈
J ∩ S�
t� �t−1�. But �t−1 + J is transcendental over S/�S ∩ J�, so bi� c ∈ J ∩ S =
pS = �
t�t−1S�. It follows that f ∈ 
tS�
t� �t−1�, so J ∩ S�
t� �t−1� ⊆ 
tS�
t� �t−1�,
and J ∩ S�
t� �t−1� = 
tS�
t� �t−1�, so ht�J ∩ S�
t� �t−1�� = 1. Therefore, ht�J ∩
R0� = 1.

Now suppose J ∈ Ass�T/�T� and let f = an�
t�
n + · · · + a1�
t�+ bm��t

−1�m +
· · · + b1��t

−1�+ c ∈ J ∩ S�
t� �t−1�. Then �T ⊆ J , so an�
t�
n + · · · + a1�
t�+

c ∈ J ∩ S�
t� �t−1�. But 
t + J is transcendental over S/�S ∩ J�, so ai� c ∈ J ∩
S = pS = �
t�t−1S�. It follows that f ∈ �t−1S�
t� �t−1�, so J ∩ S�
t� �t−1� ⊆
�t−1S�
t� �t−1�, and J ∩ S�
t� �t−1� = �t−1S�
t� �t−1�, so ht�J ∩ S�
t� �t−1�� = 1.
Therefore, ht�J ∩ R0� = 1.

So, for all cases, we have constructed an N -subring R0 such that S ⊆ R0 ⊂ T
and there exists an element x = 
t ∈ R0 for some unit t ∈ T such that Qi ∩ R0 = xR0

for all i. Now, following the proof of Theorem 16 in Loepp (1997), we can use R0

along with the previous lemma to construct the UFD A. �

Finally, we arrive at the main theorem.

Theorem 3.4. Let �T�M� be a complete local ring such that �T/M� = �T �, and let S′

denote the prime subring of T . Let C = �Q1� Q2� � � � � Qn� be a finite set of incomparable
prime ideals of T . Then there exists a local UFD A and a height one prime ideal I
of A such that Â = T and the formal fiber of I is semilocal with maximal ideals the
elements of C if and only if T is a DVR and C = �M� or T has depth at least two and
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the following conditions hold:

1. M � C;
2. No integer of T is a zerodivisor;
3. There exists a regular, nonzero element 
 ∈ T satisfying the following conditions:

(a) 
 ∈ ⋂n
i=1 Qi;

(b) if P ∈ Ass�T/
T�, then P ⊆ Qi for some i;
(c) In the case where Qi ∩ S′ = �0� for all i, if J ∈ Ass�T/rT� for some r such that

0 �= r ∈ S′, then 
 � J ;
(d) In the case where Qi ∩ S′ = pS′ for any i, there exists a � ∈ T such that p = 
�,

where if P ∈ Ass�T/�T�, then 
 � P and P � Qi for all i.

Proof. First, we prove the forward direction. Suppose that there exists a local
UFD A and a height one prime ideal I of A such that Â = T and the formal fiber of
I is semilocal with maximal ideals the elements of C. From Theorem 1.1 we know
that no integer of T is a zerodivisor and that T must be a field, a DVR, or a ring
of depth at least two. Note that �0� � C, because �0� ∩ A = �0�, which is not height
one. Because in a field �0� is the only prime ideal, this implies that T cannot be a
field. Moreover, because the only prime ideals in a DVR are (0) and M , this implies
that if T is a DVR, C = �M�.

Now, suppose that T has depth at least two. Then T has dimension at least
two, and the dimension of A is the same as that of T . Because M ∩ A is the maximal
ideal of A�M ∩ A cannot be height one, so M � C.

Because A is a UFD and I is height one, I must be principal, so I = xA for
some regular, non-zero element x ∈ T . Now, as we showed in the generic formal
fiber case, if P ∈ Ass�T/xT�, then the height of P ∩ A is one, so P ∩ A = xA. Thus, P
is in the formal fiber of I , so P ⊆ Qi for some i. Also, because Qi ∩ A = xA for all i,
it follows that x ∈ ⋂n

i=1 Qi. Therefore, x meets conditions (a) and (b) of our desired
element 
. We now divide into two cases. We will show that, if Qi ∩ S′ = �0�, we can
choose 
 = x. Otherwise, we will choose 
 = xn for some n.

Suppose that Qi ∩ S′ = �0� for all i. Then xA ∩ S′ = �0�. Let P ∈ Ass�T/rT� for
some nonzero r ∈ S′. By similar reasoning to that above, P ∩ A must have height
one. If x ∈ P, then, P ∩ A = xA. But S′ ⊂ A, so r ∈ P ∩ A = xA. This contradicts
the fact that xA ∩ S′ = �0�, so if J ∈ Ass�T/rT� for some nonzero r ∈ S′, then x � J .
Thus, x meets condition (c) of our desired element 
.

Finally, suppose that Qi ∩ S′ = pS′ for some i. Then p ∈ xA, so there exists
a y ∈ A such that p = xy. Note that, if y ∈ xA, then y = xy1 for some y1 ∈ A and
p = x2y1. By the Krull Intersection Theorem, this process must stop, so that p = xn�
where � � xA. Note that Ass�T/xnT� = Ass�T/xT�, so xn satisfies conditions (a) and
(b) for our desired element 
. Now, let P ∈ Ass�T/�T�, and suppose that P ⊆ Qi

for some i. By the same argument as above, we know that P ∩ A must be height
one, and we know that � ∈ P ∩ A. But, since P ⊆ Qi for some i� P ∩ A = �0� or
P ∩ A = xA. Because � � xA, neither of these cases is possible, so P � Qi for all i.
Now, suppose that xn ∈ P. This means that x ∈ P. Again, we know that the height
of P ∩ A is one, so P ∩ A = xA, but P � Qi for all i, so P is not in the formal fiber of
xA. This is a contradiction, so xn � P. Thus, xn satisfies condition (d) of our desired
element 
.
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Now, the backward direction. If T is a DVR and C = �M�, then A = T is the
desired ring. If T has depth greater than one, then use Lemma 3.3 to construct the
desired UFD A. �

Notice that we have some control over the generator of Qi ∩ A. In the
backward direction of the proof above, we construct our UFD A so that
Qi ∩ A = 
tA for all i where t is some unit in T . For this reason, if we are given an
element x ∈ T and we want to construct a UFD A such that xt ∈ A for some unit
t ∈ T and the formal fiber of xtA is semilocal with maximal ideals the elements of
C, we can do so if x meets the four conditions on 
 in the above theorem.

In the forward direction of the proof, we show that conditions (a)–(c) must
hold for the generator of Qi ∩ A. In the case where Qi ∩ S′ �= �0� for some i,
however, condition (d) is not a necessary condition on the generator of Qi ∩ A. If A
is a UFD with all the desired conditions and Qi ∩ A = xtA for all i, then all that has
to be true is that xn meets condition (d) for some integer n. On the other hand, in
order to use the construction given here, condition (d) must be true of x itself, not
xn. For example, one of the consequences of condition (d) is that if Qi ∩ S′ = pS′,
then p cannot be divisible in T by xn for any n ≥ 2. There is no reason to think that
this is a necessary condition on the generator of Qi ∩ A, but it is necessary for our
construction.

The following corollary is the local version of the above theorem.

Corollary 3.5. Let �T�M� be a complete local ring such that �T/M� = �T �, and let S′

denote the prime subring of T . Let P be a prime ideal of T . Then there exists a UFD A
and a height one prime ideal I of A such that Â = T and the formal fiber of I is local
with maximal ideal P if and only if T is a DVR and P = M or T has depth at least two
and the following conditions hold:

1. P �= M;
2. No integer of T is a zerodivisor;
3. There exists a regular, nonzero element 
 ∈ P, satisfying the following:

(a) If Q ∈ Ass�T/
T�, then Q ⊆ P;
(b) In the case where P ∩ S′ = �0�, if J ∈ Ass�T/rT� for some r such that 0 �= r ∈ S′,

then 
 � J ;
(c) In the case where P ∩ S′ = pS′, there exists a � ∈ T such that p = 
�, where if

Q ∈ Ass�T/�T�, then 
 � Q and Q � P.

Here is an example.

Example 3.6. Consider the complete local ring T = ���x� y� z� w��/�x2 − yz�. Let
P = �x� y� z�. Is there a local UFD A that completes to T and a height one prime
ideal I of A such that Â = T and the formal fiber of I is local with maximal ideal P?

First note that �T/M� = �T �, no integer is a zerodivisor, and T has depth
at least two. Now, since M = �x� y� z� w�, we have P �= M . Now, look at x ∈ P.
We have Ass�T/xT� = ��x� y�� �x� z��, and both of these ideals are contained in P.
Note that the prime subring of T consists only of units, so condition (b) holds
trivially. Therefore, there does exist a UFD A with all of the desired properties.
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