MA 565 Homework 10 Due Friday, November 6

Axler 5.C # 6, 16

- 1. Prove that two 2×2 matrices which are not scalar matrices are similar if and only if they have the same characteristic polynomial.
- 2. Prove that two 3×3 matrices are similar if and only if they have the same characteristic and minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.
- 3. Find all similarity classes of 6×6 matrices over \mathbb{Q} with minimal polynomial $(x+2)^2(x-1)$.
- 4. Find all similarity classes of 6×6 matrices over \mathbb{C} with characteristic polynomial $(x^4 1)(x^2 1)$.
- 5. Find all similarity classes of 3×3 matrices over \mathbb{F}_2 satisfying $A^6 = \text{Id}$.
- 6. Let V be a finite dimensional vector space over \mathbb{Q} and suppose that T is a nonsingular linear transformation of V such that $T^{-1} = T^2 + T$. Prove that the dimension of V is divisible by 3. If the dimension of V is precisely 3, prove that all such linear transformations T are similar.