MA 565 Homework 10

Due Friday, November 6
Axler 5.C \# 6, 16

1. Prove that two 2×2 matrices which are not scalar matrices are similar if and only if they have the same characteristic polynomial.
2. Prove that two 3×3 matrices are similar if and only if they have the same characteristic and minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.
3. Find all similarity classes of 6×6 matrices over \mathbb{Q} with minimal polynomial $(x+2)^{2}(x-1)$.
4. Find all similarity classes of 6×6 matrices over \mathbb{C} with characteristic polynomial $\left(x^{4}-1\right)\left(x^{2}-1\right)$.
5. Find all similarity classes of 3×3 matrices over \mathbb{F}_{2} satisfying $A^{6}=\mathrm{Id}$.
6. Let V be a finite dimensional vector space over \mathbb{Q} and suppose that T is a nonsingular linear transformation of V such that $T^{-1}=T^{2}+T$. Prove that the dimension of V is divisible by 3 . If the dimension of V is precisely 3 , prove that all such linear transformations T are similar.
