MA 565 Homework 14 Due Friday, December 11

Axler 6.C # 7, 8, 14

Axler 10.B # 12

1. (a) Show that $\mathbb{R}^{\oplus \infty}$ is an inner product space under the inner product

$$\langle (x_1, x_2, \ldots), (y_1, y_2, \ldots) \rangle = \sum_{i=1}^{\infty} x_i y_i.$$

- (b) Use this example to show that the Riesz representation theorem does not hold for infinite dimensional inner product spaces.
- 2. Let V and W be inner product spaces. A linear map $T: V \to W$ is bounded if there exists a constant $K \ge 0$ such that $||T(v)|| \le K ||v||$ for all $v \in V$.
 - (a) Show that, if V and W are finite dimensional, then any linear map $T: V \to W$ is bounded.
 - (b) Find an example of a linear map between inner product spaces that is not bounded.
 - (c) A function $T: V \to W$ is *continuous* if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that, whenever $||v - u|| < \delta$ for some $u, v \in V$, we have $||T(v) - T(u)|| < \epsilon$. Show that a linear map $T: V \to W$ is continuous if and only if it is bounded.