MA 565 Homework 4
Due Friday, September 25
Axler Chapter 3E \# 2,4,5,6

1. Given linear maps $T: U \rightarrow V$ and $S: W \rightarrow V$, the fiber product $U \times_{V} W$ is defined to be

$$
U \times_{V} W=\{(u, w) \in U \times W \mid T(u)=S(w)\}
$$

(a) Show that $U \times{ }_{0} W$ is equal to $U \times W$.
(b) Show that, if $S: W \rightarrow W$ is the identity, then $U \times_{W} W$ is equal to the graph of T.
(c) Let X be a vector space and suppose that there exist linear maps $T^{\prime}: X \rightarrow U, S^{\prime}: X \rightarrow W$ making the following diagram commute:

Show that there exists a unique linear map $\varphi: X \rightarrow U \times_{V} W$ making the following diagram commute:

