MA 565 Homework 4 Due Friday, September 25

Due Fliday, September

Axler Chapter 3E # 2,4,5,6

1. Given linear maps $T: U \to V$ and $S: W \to V$, the fiber product $U \times_V W$ is defined to be

$$U \times_V W = \{(u, w) \in U \times W | T(u) = S(w)\}.$$

- (a) Show that $U \times_0 W$ is equal to $U \times W$.
- (b) Show that, if $S: W \to W$ is the identity, then $U \times_W W$ is equal to the graph of T.
- (c) Let X be a vector space and suppose that there exist linear maps $T': X \to U, S': X \to W$ making the following diagram commute:

Show that there exists a unique linear map $\varphi : X \to U \times_V W$ making the following diagram commute:

