MA 565 Homework 7

Due Friday, October 16

1. Let k be a field. Show that the dot product $\cdot: k^{n} \times k^{n} \rightarrow k$, given by

$$
\left(x_{1}, \ldots x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} x_{i} y_{i}
$$

is bilinear.
2. Show that the cross product $\times: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, given by

$$
\left(x_{1}, y_{1}, z_{1}\right) \times\left(x_{2}, y_{2}, z_{2}\right)=\left(y_{1} z_{2}-y_{2} z_{1}, z_{1} x_{2}-z_{2} x_{1}, x_{1} y_{2}-x_{2} y_{1}\right)
$$

is bilinear.
3. Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic as vector spaces over \mathbb{R}.
4. Let $\left\{e_{1}, e_{2}\right\}$ be a basis for $V=\mathbb{R}^{2}$. Show that the element $e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ in $V \otimes_{\mathbb{R}} V$ cannot be written as a simple tensor $v \otimes w$ for any $v, w \in \mathbb{R}^{2}$.
5. Let V be a vector space over a field k and let v, v^{\prime} be nonzero elements of V. Prove that $v \otimes v^{\prime}=v^{\prime} \otimes v$ if and only if $v=a v^{\prime}$ for some $a \in k$.
6. Let V be a vector space over a field k. Show that $V \otimes_{k} k \cong V$.
7. Let U, V, and W be vector spaces over a field k. Show that

$$
V \otimes(U \times W) \cong(V \otimes U) \times(V \otimes W)
$$

8. Let U, V, and W be vector spaces over a field k. Show that

$$
\operatorname{Hom}(U \otimes V, W) \cong \operatorname{Hom}(U, \operatorname{Hom}(V, W))
$$

