MA 565 Homework 8

Due Friday, October 23

1. Let $T: U \rightarrow V$ be a linear map, and let W be a vector space. Show that the map $\bar{T}: U \otimes W \rightarrow V \otimes W$ given by

$$
\bar{T}\left(\sum_{i=1}^{n} u_{i} \otimes w_{i}\right)=\sum_{i=1}^{n} T\left(u_{i}\right) \otimes w_{i}
$$

is linear.
2. Let

$$
0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0
$$

be a short exact sequence of vector spaces, and let W be a vector space. Show that

$$
0 \rightarrow V^{\prime} \otimes W \rightarrow V \otimes W \rightarrow V^{\prime \prime} \otimes W \rightarrow 0
$$

is also exact, where the maps are as in the previous problem.
3. Find an example of a vector space V, over a field k of characteristic 2 , and a bilinear map $T: V \times V \rightarrow k$ that cannot be decomposed as a sum of symmetric and alternating bilinear maps.
4. Let $V=k[x]_{\leq 1}$ be the set of linear polynomials in one variable over a field k. Construct an isomorphism from $\operatorname{Sym}^{d} V$ to $k[x]_{\leq d}$.
5. Let V and W be vector spaces over a field k, char $k \neq 2$, and let $T: V \times V \rightarrow W$ be a bilinear map. Prove that T is alternating if and only if $T(v, v)=0$ for all $v \in V$.
6. The triple product of 3 vectors in \mathbb{R}^{3} is the signed volume of the parallelopiped that they span, given by

$$
T\left(\left(u_{1}, u_{2}, u_{3}\right),\left(v_{1}, v_{2}, v_{3}\right),\left(w_{1}, w_{2}, w_{3}\right)\right)=\sum_{\sigma \in S_{3}} \operatorname{sign}(\sigma) u_{\sigma(1)} v_{\sigma(2)} w_{\sigma(3)} .
$$

Show that $T: \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is an alternating trilinear map.
7. Let V and W be vector spaces over a field k. Prove that

$$
\bigwedge^{n}(V \oplus W) \cong \bigoplus_{p+q=n} \bigwedge^{p} V \otimes \bigwedge^{q} W
$$

