MA 665 EXERCISES 11

(1) Let $V \subseteq \mathbb{A}^{n}, W \subseteq \mathbb{A}^{m}$ be varieties. Shows that
$V \times W:=\left\{\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in V,\left(b_{1}, \ldots, b_{m}\right) \in W\right\}$ is a variety in \mathbb{A}^{n+m}.
(2) Let I be an ideal in a ring R. Show that if a^{n} and b^{m} are in I, then so is $(a+b)^{n+m}$. Conclude that
$\operatorname{Rad}(I):=\left\{a \in R \mid a^{n} \in I\right.$ for some positive integer $\left.n\right\}$ is an ideal in R.
(3) Let $X \subset \mathbb{A}^{n}$ be a variety.
(a) Let $p \in \mathbb{A}^{n}$ be a point not in X. Show that there is a polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $f(q)=0$ for all $q \in X$, and $f(p)=1$.
(b) Now let $p_{1}, \ldots, p_{r} \in \mathbb{A}^{n}$ be distinct points not in X. Show that there are polynomials $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $f_{i}(q)=0$ for all $q \in X$, $f_{i}\left(p_{j}\right)=0$ for all $j \neq i$, and $f_{i}\left(p_{i}\right)=1$.
(c) Let $a_{i j} \in k$ be constants for $1 \leq i, j \leq r$. Show that there are polynomials $g_{1}, \ldots, g_{r} \in I(X)$ such that $g_{i}\left(p_{j}\right)=a_{i j}$ for all i and j.

