MA 665 EXERCISES 11

- (1) Let $V \subseteq \mathbb{A}^n$, $W \subseteq \mathbb{A}^m$ be varieties. Shows that $V \times W := \{(a_1, \dots, a_n, b_1, \dots, b_m) | (a_1, \dots, a_n) \in V, (b_1, \dots, b_m) \in W\}$ is a variety in \mathbb{A}^{n+m} .
- (2) Let I be an ideal in a ring R. Show that if a^n and b^m are in I, then so is $(a+b)^{n+m}$. Conclude that

 $\operatorname{Rad}(I) := \{ a \in R | a^n \in I \text{ for some positive integer } n \}$

is an ideal in R.

- (3) Let $X \subset \mathbb{A}^n$ be a variety.
 - (a) Let $p \in \mathbb{A}^n$ be a point not in X. Show that there is a polynomial $f \in k[x_1, \ldots, x_n]$ such that f(q) = 0 for all $q \in X$, and f(p) = 1.
 - (b) Now let $p_1, \ldots, p_r \in \mathbb{A}^n$ be distinct points not in X. Show that there are polynomials $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$ such that $f_i(q) = 0$ for all $q \in X$, $f_i(p_j) = 0$ for all $j \neq i$, and $f_i(p_i) = 1$.
 - (c) Let $a_{ij} \in k$ be constants for $1 \leq i, j \leq r$. Show that there are polynomials $g_1, \ldots, g_r \in I(X)$ such that $g_i(p_j) = a_{ij}$ for all i and j.