MA 665 EXERCISES 13

(1) Let R be a commutative ring with unit, and $x \in R$ an element that is neither a unit nor a zero divisor. Prove that the set of associated primes of $R /\left(x^{n}\right)$ is equal to the set of associated primes of $R /(x)$ for all $n \geq 1$.
(2) Let M be a finitely generated R-module. The support of M is the set of prime ideals $P \subset R$ such that $M_{P} \neq 0$.
(a) Prove that every associated prime of M is contained in the support of M.
(b) Show that if P is a minimal element of the support of M, then P is an associated prime of M.
(3) Let $S \subset R$ be a multiplicative set, M an R-module, and $N, N^{\prime} \subseteq M$ submodules of M. Prove that $\left(N \cap N^{\prime}\right)_{S}=N_{S} \cap N_{S}^{\prime}$.

