MA 665 EXERCISES 2

- (1) Let A be a finite abelian group of order n and let p^k be the largest power of the prime p dividing n. Prove that $\mathbb{Z}/p^k\mathbb{Z}\otimes_{\mathbb{Z}} A$ is isomorphic to the Sylow p-subgroup of A.
- (2) Let R be a commutative ring and let I, J be ideals of R.
 - (a) Prove that every element of $R/I \otimes_R R/J$ can be written as a simple tensor of the form $(1+I) \otimes (r+J)$.
 - (b) Prove that there is an *R*-module isomorphism from $R/I \otimes_R R/J$ to R/(I+J) mapping $(r+I) \otimes (r'+J)$ to rr' + (I+J).
- (3) Prove that extension of scalars from \mathbb{Z} to the Gaussian integers $\mathbb{Z}[i]$ of the ring \mathbb{R} is isomorphic to \mathbb{C} as a ring. In other words, $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$ is isomorphic to \mathbb{C} as a ring.