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10. Ramification

Definition 10.1. Let D be a divisor of rank r on a graph G, and let v be a vertex
of G. The sequence

a0 < a1 < · · · < ar

defined by

ai := max{m| rk(D −mv) ≥ r − i}
is called the ramification sequence of D at v. We say that v is a ramification point
of D if the ramification sequence of D at v is anything other than 0 < 1 < · · · < r.

Example 10.2. Let D be a divisor of degree d ≥ 0 on a tree, and let v be any vertex
of the tree. For m ≤ d + 1, we see that rk(D − mv) = deg(D − mv) = d − m. It
follows that the ramification sequence of D at v is

0 < 1 < · · · < d.

In other words, a divisor on a tree has no ramification points. This should be expected,
because any two vertices of a tree are equivalent.

Example 10.3. Let D be a divisor of degree d > 0 on a cycle, and let v be a vertex
of the cycle. For m < d, we see that rk(D −mv) = deg(D −mv) − 1 = d −m − 1.
We therefore see that ai = i for all i < d− 1. Now, the rank of D − dv is either 0 or
−1. More precisely, D − dv has rank 0 if and only if D − dv ∼ 0. It follows that v is
a ramification point of D if and only if D ∼ dv.

Consider, for example, a cycle with 5 vertices. Label the vertices clockwise by
v0, . . . , v4. Recall that the map from Jac(G) to Z/5Z given by

4∑
i=0

aivi 7→
4∑

i=0

ivi (mod 5)

is an isomorphism. Because of this, any divisor of degree d is equivalent to a divisor
of the form (d − 1)v0 + vi for some i. The vertex vj is a ramification point of the
divisor D = (d− 1)v0 + vi if and only if i ≡ dj (mod 5).

If d is not divisible by 5, then there is a unique solution to this congruence. Thus,
every divisor of degree d has a unique ramification point. On the other hand, if d is
divisible by 5, then dj ≡ 0 (mod 5). It follows that the divisor D = (d−1)v0 +vi has
no ramification points if i 6= 0, and every vertex is a ramification point of the divisor
D = dv0.
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Example 10.4. We consider ramification points of the canonical divisor on the graph
pictured in Figure 1. Ramification points of the canonical divisor are typically referred
to as Weierstrass points. Since the pictured graph has genus 2, the canonical divisor
has rank 1. Moreover, for any vertex u of G, we have that

rk(KG − u) ≤ 1

2
deg(KG − u) =

1

2
,

so rk(KG − u) = 0. It follows that a0 = 0.
Now, the divisor KG − 2v is v-reduced and not effective. The divisor KG − 2v

therefore has negative rank. The ramification sequence of KG at v is thus a0 = 0,
a1 = 1, so v is not a Weierstrass point. On the other hand, the divisor KG − 2w is
equivalent to the zero divisor. We therefore see that the ramification sequence of KG

at w is a0 = 0, a1 = 2, so w is a Weierstrass point.

w

v

Figure 1. A graph of genus 2.

It is traditional to express the ramification sequence using partitions. In what
follows, we identify the boxes in the Ferrers diagram of a partition with lattice points
in Z2

>0
1.

Definition 10.5. Let D be a divisor on a graph G of genus g, and let v be a vertex
of G. We define the Weierstrass partition of D at v to be the partition

λG,v(D) := {(r + 1, g − d+ r)| rk(D − (deg(D)− d)v) ≥ r}.

We first note that the Weierstrass partition is indeed a partition. To see this, it
suffices to show that if (r+ 1, g− d+ r) ∈ λG,v(D), then both (r+ 1, g− d+ r− 1) ∈
λG,v(D) and (r, g − d+ r) ∈ λG,v(D). Let E be the divisor D − (deg(D)− d)v. The
first of these two implications follows from the fact that

rk(E + v) ≥ rk(E) for any divisor E.

The second follows from the fact that

rk(E − v) ≥ rk(E)− 1 for any divisor E.

We now record several other simple facts about Weierstrass partitions.

1We have chosen to depict partitions in the English style, which has the unfortunately reflects

the y-axis from the standard coordinate system. In particular, the box (1, 1) appears in the upper
left of the Ferrers diagram, and the box (1, 2) appears below it.
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Lemma 10.6. Let G be a graph of genus g and let v be any vertex of G. A divisor
D on g has rank at least r if and only if

(r + 1, g − deg(D) + r) ∈ λG,v(D).

Proof. By definition, we have (r + 1, g − deg(D) + r) ∈ λG,v(D) if and only if

rk(D − 0 · v) ≥ r.
�

One nice aspect of this definition is that the Weierstrass partition is invariant
under addition of the vertex v.

Lemma 10.7. Let G be a graph and let D be a divisor on G. For any vertex v of G,
we have λG,v(D) = λG,v(D + v).

Proof. We have (r + 1, g − d+ r) ∈ λG,v(D + v) if and only if

rk(D + v − (deg(D + v)− d)v) ≥ r.
But

D + v − (deg(D + v)− d)v = D − (deg(D)− d)v,

and the result follows. �

The term g− d+ r in the definition of the Weierstrass partition may appear to be
mysterious, but it is motivated by Riemann-Roch. There is a natural involution on
the set of partitions given by the transpose. There is also a natural involution on the
set of divisors given by mapping a divisor D to KG −D. The Weierstrass partition
is defined so that these two involutions agree.

Proposition 10.8. Let G be a graph and v a vertex of G. For any divisor D on G,
we have λG,v(KG −D) = λTG,v(D).

Proof. Suppose that (r+1, g−d+r) ∈ λG,v(D). We must show that (g−d+r, r+1) ∈
λG,v(KG −D). By Riemann-Roch, we have

rk(KG −D − (deg(KG −D)− (2g − 2− d))v) = rk(KG −D − (d− deg(D))v)

= rk(D − (deg(D)− d)v)− d+ g − 1 ≥ g − d+ r − 1.

It follows that (g − d+ r, r + 1) ∈ λG,v(KG −D). �

Example 10.9. We again consider the canonical divisor in Example 10.4. We have
rk(KG) = 1, so by Lemma 10.6, the Weierstrass partition λG,u(KG) contains the box
(2, 1) for any vertex u. Recall that w is a Weierstrass point, but v is not. It follows
that λG,w(KG) contains the box (1, 2), but λG,v(KG) does not. The Weierstrass
partitions λG,w(KG) and λG,v(KG) are pictured in Figure 2.
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λG,w(KG) λG,v(KG)

Figure 2. Weierstrass partitions for the canonical divisor on a
graph of genus 2 at a Weierstrass and non-Weierstrass point.


