CHIP FIRING

10. RAMIFICATION

Definition 10.1. Let D be a divisor of rank r on a graph G, and let v be a vertex of G. The sequence

 $a_0 < a_1 < \dots < a_r$

defined by

$$a_i := \max\{m | \operatorname{rk}(D - mv) \ge r - i\}$$

is called the ramification sequence of D at v. We say that v is a ramification point of D if the ramification sequence of D at v is anything other than $0 < 1 < \cdots < r$.

Example 10.2. Let *D* be a divisor of degree $d \ge 0$ on a tree, and let *v* be any vertex of the tree. For $m \le d+1$, we see that $\operatorname{rk}(D-mv) = \operatorname{deg}(D-mv) = d-m$. It follows that the ramification sequence of *D* at *v* is

$$0 < 1 < \dots < d.$$

In other words, a divisor on a tree has no ramification points. This should be expected, because any two vertices of a tree are equivalent.

Example 10.3. Let D be a divisor of degree d > 0 on a cycle, and let v be a vertex of the cycle. For m < d, we see that $\operatorname{rk}(D - mv) = \operatorname{deg}(D - mv) - 1 = d - m - 1$. We therefore see that $a_i = i$ for all i < d - 1. Now, the rank of D - dv is either 0 or -1. More precisely, D - dv has rank 0 if and only if $D - dv \sim 0$. It follows that v is a ramification point of D if and only if $D \sim dv$.

Consider, for example, a cycle with 5 vertices. Label the vertices clockwise by v_0, \ldots, v_4 . Recall that the map from Jac(G) to $\mathbb{Z}/5\mathbb{Z}$ given by

$$\sum_{i=0}^{4} a_i v_i \mapsto \sum_{i=0}^{4} i v_i \pmod{5}$$

is an isomorphism. Because of this, any divisor of degree d is equivalent to a divisor of the form $(d-1)v_0 + v_i$ for some i. The vertex v_j is a ramification point of the divisor $D = (d-1)v_0 + v_i$ if and only if $i \equiv dj \pmod{5}$.

If d is not divisible by 5, then there is a unique solution to this congruence. Thus, every divisor of degree d has a unique ramification point. On the other hand, if d is divisible by 5, then $dj \equiv 0 \pmod{5}$. It follows that the divisor $D = (d-1)v_0 + v_i$ has no ramification points if $i \neq 0$, and every vertex is a ramification point of the divisor $D = dv_0$.

Date: February 8, 2019.

CHIP FIRING

Example 10.4. We consider ramification points of the canonical divisor on the graph pictured in Figure 1. Ramification points of the canonical divisor are typically referred to as *Weierstrass points*. Since the pictured graph has genus 2, the canonical divisor has rank 1. Moreover, for any vertex u of G, we have that

$$\operatorname{rk}(K_G - u) \le \frac{1}{2} \operatorname{deg}(K_G - u) = \frac{1}{2}$$

so $\operatorname{rk}(K_G - u) = 0$. It follows that $a_0 = 0$.

Now, the divisor $K_G - 2v$ is *v*-reduced and not effective. The divisor $K_G - 2v$ therefore has negative rank. The ramification sequence of K_G at v is thus $a_0 = 0$, $a_1 = 1$, so v is not a Weierstrass point. On the other hand, the divisor $K_G - 2w$ is equivalent to the zero divisor. We therefore see that the ramification sequence of K_G at w is $a_0 = 0$, $a_1 = 2$, so w is a Weierstrass point.

FIGURE 1. A graph of genus 2.

It is traditional to express the ramification sequence using partitions. In what follows, we identify the boxes in the Ferrers diagram of a partition with lattice points in $\mathbb{Z}_{>0}^{2}^{-1}$.

Definition 10.5. Let D be a divisor on a graph G of genus g, and let v be a vertex of G. We define the Weierstrass partition of D at v to be the partition

$$\lambda_{G,v}(D) := \{ (r+1, g-d+r) | \operatorname{rk}(D - (\operatorname{deg}(D) - d)v) \ge r \}.$$

We first note that the Weierstrass partition is indeed a partition. To see this, it suffices to show that if $(r+1, g-d+r) \in \lambda_{G,v}(D)$, then both $(r+1, g-d+r-1) \in \lambda_{G,v}(D)$ and $(r, g-d+r) \in \lambda_{G,v}(D)$. Let E be the divisor $D - (\deg(D) - d)v$. The first of these two implications follows from the fact that

$$\operatorname{rk}(E+v) \ge \operatorname{rk}(E)$$
 for any divisor E .

The second follows from the fact that

$$\operatorname{rk}(E-v) \ge \operatorname{rk}(E) - 1$$
 for any divisor E.

We now record several other simple facts about Weierstrass partitions.

¹We have chosen to depict partitions in the English style, which has the unfortunately reflects the *y*-axis from the standard coordinate system. In particular, the box (1, 1) appears in the *upper* left of the Ferrers diagram, and the box (1, 2) appears *below* it.

Lemma 10.6. Let G be a graph of genus g and let v be any vertex of G. A divisor D on g has rank at least r if and only if

$$(r+1, g - \deg(D) + r) \in \lambda_{G,v}(D).$$

Proof. By definition, we have $(r + 1, g - \deg(D) + r) \in \lambda_{G,v}(D)$ if and only if

 $\operatorname{rk}(D - 0 \cdot v) \ge r.$

One nice aspect of this definition is that the Weierstrass partition is invariant under addition of the vertex v.

Lemma 10.7. Let G be a graph and let D be a divisor on G. For any vertex v of G, we have $\lambda_{G,v}(D) = \lambda_{G,v}(D+v)$.

Proof. We have
$$(r+1, g-d+r) \in \lambda_{G,v}(D+v)$$
 if and only if

$$\operatorname{rk}(D + v - (\operatorname{deg}(D + v) - d)v) \ge r.$$

But

$$D + v - (\deg(D + v) - d)v = D - (\deg(D) - d)v,$$

and the result follows.

The term g - d + r in the definition of the Weierstrass partition may appear to be mysterious, but it is motivated by Riemann-Roch. There is a natural involution on the set of partitions given by the transpose. There is also a natural involution on the set of divisors given by mapping a divisor D to $K_G - D$. The Weierstrass partition is defined so that these two involutions agree.

Proposition 10.8. Let G be a graph and v a vertex of G. For any divisor D on G, we have $\lambda_{G,v}(K_G - D) = \lambda_{G,v}^T(D)$.

Proof. Suppose that $(r+1, g-d+r) \in \lambda_{G,v}(D)$. We must show that $(g-d+r, r+1) \in \lambda_{G,v}(K_G - D)$. By Riemann-Roch, we have

$$rk(K_G - D - (\deg(K_G - D) - (2g - 2 - d))v) = rk(K_G - D - (d - \deg(D))v) = rk(D - (\deg(D) - d)v) - d + g - 1 \ge g - d + r - 1.$$

It follows that $(g - d + r, r + 1) \in \lambda_{G,v}(K_G - D).$

Example 10.9. We again consider the canonical divisor in Example 10.4. We have $\operatorname{rk}(K_G) = 1$, so by Lemma 10.6, the Weierstrass partition $\lambda_{G,u}(K_G)$ contains the box (2,1) for any vertex u. Recall that w is a Weierstrass point, but v is not. It follows that $\lambda_{G,w}(K_G)$ contains the box (1,2), but $\lambda_{G,v}(K_G)$ does not. The Weierstrass partitions $\lambda_{G,w}(K_G)$ and $\lambda_{G,v}(K_G)$ are pictured in Figure 2.

FIGURE 2. Weierstrass partitions for the canonical divisor on a graph of genus 2 at a Weierstrass and non-Weierstrass point.