CHIP FIRING

15. RIEMANN-ROCH FOR METRIC GRAPHS

Recall the statement of the Riemann-Roch Theorem.

Theorem 15.1 (Riemann-Roch for Metric Graphs). Let Γ be a metric graph of genus g. For any $D \in \text{Div}(\Gamma)$,

$$r(D) - r(K_{\Gamma} - D) = \deg(D) - g + 1.$$

Before proving this, we briefly describe the alternative argument of Gathmann and Kerber. First, one can use Riemann-Roch for discrete graphs to show that the result holds if Γ has rational edge lengths and D is supported on the Q-points of Γ . One then uses the fact that such pairs (Γ, D) are dense in the set of all pairs.

Rather than reducing to Riemann-Roch for discrete graphs, we can instead mimic its proof. In their seminal paper, Baker and Norine describe a general strategy for proving theorems of Riemann-Roch type. Specifically, let X be a non-empty set and let Div(X) be the free abelian group on X. As usual, we define the degree of a divisor to be the sum of its coefficients, and we say that a divisor is effective if all of its coefficients are nonnegative. Let \sim be an equivalence relation on X satisfying:

- (1) if $D \sim D'$, then $\deg(D) = \deg(D')$, and
- (2) if $D_1 \sim D'_1$ and $D_2 \sim D'_2$, then $D_1 + D_2 \sim D'_1 + D'_2$.

We can define a rank function on Div(X) by declaring rk(D) to be -1 if D is not equivalent to an effective divisor, and otherwise declaring rk(D) to be the largest integer r such that D - E is equivalent to an effective divisor for all effective divisors E of degree r. Finally, let g be an integer, and let $K \in \text{Div}(X)$ be a divisor of degree 2g - 2. Baker and Norine prove the following.

Theorem 15.2. The Riemann-Roch formula

$$r(D) - r(K_{\Gamma} - D) = \deg(D) - g + 1$$

holds for every $D \in Div(X)$ if and only if the following 2 conditions hold:

- (1) For every $D \in \text{Div}(X)$, either $\operatorname{rk}(D) \ge 0$, or there exists a divisor D' of degree g 1 and rank -1 such that $\operatorname{rk}(D' D) \ge 0$.
- (2) For every $D \in \text{Div}(X)$ of degree g-1, if rk(D) = -1, then rk(K-D) = -1.

It is straightforward to see that the 2 conditions follow from the Riemann-Roch formula. For the converse, we invite the reader to return to the proof of Riemann-Roch for graphs presented in Lecture 9, and see how the two conditions were used there.

Date: March 4, 2019.

CHIP FIRING

We now show that the 2 conditions hold for divisors on metric graphs. For the first condition, we must identify a suitably large collection of divisors of degree g-1 and rank -1. In the case of discrete graphs, these were the orientable divisors.

Definition 15.3. An orientation on a metric graph Γ is an orientation of some model for Γ . As in the discrete case, given an orientation \mathcal{O} , define

$$D_{\mathcal{O}} = \sum_{v \in \Gamma} (\operatorname{indeg}_{\mathcal{O}}(v) - 1)v.$$

Lemma 15.4. If \mathcal{O} is an acyclic orientation, then $D_{\mathcal{O}}$ is not equivalent to an effective divisor.

Proof. Let $D = D_{\mathcal{O}} + \operatorname{div}(\varphi)$ for some $\varphi \in \operatorname{PL}(\Gamma)$, and let $A \subseteq \Gamma$ be the set where φ obtains its minimum. Since \mathcal{O} is acyclic, there exists $v \in A$ such that v is a source in $\mathcal{O}|_A$. Then

$$D(v) \leq \operatorname{indeg}_{\mathcal{O}}(v) - \operatorname{outdeg}_{A}(v) - 1 < 0.$$

We now show that the first condition holds.

Lemma 15.5. For any $D \in \text{Div}(\Gamma)$, either D is equivalent to an effective divisor, or there exists an acyclic orientation \mathcal{O} such that $D_{\mathcal{O}} - D$ is equivalent to an effective divisor. Moreover, for any $v \in \Gamma$, \mathcal{O} can be taken to have unique source v.

Proof. We may assume that D is v-reduced. Let G be a model for Γ with vertex set containing $\{v\} \cup \operatorname{Supp}(D)$. Run Dhar's burning algorithm on G and orient each edge in the direction that it burns. This produces an acyclic orientation \mathcal{O} of G with unique source v. For any vertex $w \in V(G) \setminus \{v\}$, since D is v-reduced we have $D(w) < \operatorname{indeg}_{\mathcal{O}}(w)$, so $D_{\mathcal{O}}(w) \geq D(w)$. Now, since D is v-reduced, D is equivalent to an effective divisor if and only if $D(v) > -1 = D_{\mathcal{O}}(v)$, and the result follows. \Box

The second condition follows from the previous two.

Lemma 15.6. Let $D \in \text{Div}(\Gamma)$ be a divisor of degree g-1. If D is not equivalent to an effective divisor, then $K_{\Gamma} - D$ is not equivalent to an effective divisor.

Proof. If D is not equivalent to an effective divisor, then by Lemma 15.5, there exists an acyclic orientation \mathcal{O} such that $D_{\mathcal{O}} - D$ is equivalent to an effective divisor. Since $\deg(D) = g - 1$, the degree of $D_{\mathcal{O}} - D$ is zero. The only effective divisor of degree zero is the zero divisor, so $D \sim D_{\mathcal{O}}$. Now, if $\overline{\mathcal{O}}$ is the reverse orientation, then $D_{\mathcal{O}} + D_{\overline{\mathcal{O}}} = K_{\Gamma}$, so $K_{\Gamma} - D \sim D_{\overline{\mathcal{O}}}$. Since \mathcal{O} is acyclic, $\overline{\mathcal{O}}$ is acyclic as well, and the result follows from Lemma 15.4.

Combining Lemmas 15.5 and 15.6 with the theorem of Baker and Norine, we obtain the Riemann-Roch theorem for metric graphs.

 $\mathbf{2}$