CHIP FIRING

8. The Rank of a Divisor

A key invariant of a divisor is its rank. It is this invariant that powers the connection between chip firing and algebraic geometry.
Definition 8.1. Let D be a divisor on a graph. If D is not equivalent to an effective divisor, we say that D has rank -1. Otherwise, we define the rank of D to be the largest integer r such that, for all effective divisors E of degree $r, D-E$ is equivalent to an effective divisor.

Example 8.2. Since the only effective divisor of degree zero is the identically zero divisor, we see that a divisor has nonnegative rank if and only if it is equivalent to an effective divisor.

Example 8.3. Computing the rank of a divisor can be thought of as a game, in which our opponent is allowed to "steal" r chips from wherever they like, and our task is to perform a sequence of chip firing moves that eliminates the debt created by our opponent. If we can win this game regardless of which r chips our opponent chooses to steal, then the divisor has rank at least r.

Consider, for example, the two divisors of degree 2 depicted in Figure 1. Both divisors are effective, so they both have nonnegative rank. To determine whether a divisor D has rank at least 1 , we check to see if $D-v$ is equivalent to an effective divisor for each vertex v. For the divisor on the left, if v is the bottom right vertex, then Dhar's Burning Algorithm shows that $D-v$ is v-reduced, but not effective. It follows that $D-v$ is not equivalent to an effective divisor, hence D has rank less than 1. Since we have already seen that D has nonnegative rank, we see that it must have rank 0 .

Figure 1. Two divisors of the same degree and different rank on a graph of genus 2

On the other hand, the divisor K on the right has rank at least 1. Again, to see this we must check whether $K-v$ is equivalent to an effective divisor for each vertex v. By symmetry, it suffices to consider the case where v is the center vertex, and

[^0]the case where v is the bottom right vertex. If v is the center vertex, then $K-v$ is effective. If v is the bottom right vertex, then we use Dhar's Burning Algorithm to compute the v-reduced divisor equivalent to $K-v$. This divisor is obtained by firing the 3 vertices in the lefthand triangle, and the result is effective. Therefore, the divisor K has rank at least 1 .

To see that the rank of K is exactly 1 , note that D is an effective divisor of degree 2 , and K is not equivalent to D. Therefore, $K-D$ is not equivalent to 0 . Since the zero divisor is the only effective divisor of degree 0 , we see that $K-D$ is not equivalent to an effective divisor. It follows that the rank of K is less than 2.

We record a few other simple observations about ranks of divisors.
Lemma 8.4. Let D be a divisor on a graph of genus g. Then $\operatorname{rk}(D) \geq \operatorname{deg}(D)-g$.
Proof. If $\operatorname{deg}(D)<g$, the result is obvious, since every divisor has rank at least -1 . Otherwise, let E be an effective divisor of degree $\operatorname{deg}(D)-g$. Then $\operatorname{deg}(D-E)=g$. We have seen that every divisor of degree g is equivalent to an effective divisor, so $D-E$ is equivalent to an effective divisor. Since E was arbitrary, we see that the D has rank at least $\operatorname{deg}(D)-g$.

Lemma 8.5. Let D_{1}, D_{2} be divisors of nonnegative rank on a graph G. Then

$$
\operatorname{rk}\left(D_{1}+D_{2}\right) \geq \operatorname{rk}\left(D_{1}\right)+\operatorname{rk}\left(D_{2}\right)
$$

Proof. Let E be an effective divisor of degree $\operatorname{rk}\left(D_{1}\right)+\operatorname{rk}\left(D_{2}\right)$. Write $E=E_{1}+E_{2}$, where E_{1} and E_{2} are both effective and $\operatorname{deg}\left(E_{i}\right)=\operatorname{rk}\left(D_{i}\right)$. By definition, $D_{i}-E_{i}$ is equivalent to an effective divisor F_{i}. It follows that $\left(D_{1}+D_{2}\right)-E=\left(D_{1}-E_{1}\right)+$ $\left(D_{2}-E_{2}\right)$ is equivalent to $F_{1}+F_{2}$, an effective divisor. Since E was arbitrary, we see that $D_{1}+D_{2}$ has rank at least $\operatorname{rk}\left(D_{1}\right)+\operatorname{rk}\left(D_{2}\right)$.

We make the following definition.
Definition 8.6. Let D be a divisor on a graph G. We define

$$
\operatorname{deg}^{+}(D)=\sum_{v \in V(G), D(v)>0} D(v)
$$

We can now give an alternate characterization of the rank.
Proposition 8.7. Let D be a divisor on a graph G. Then

$$
\operatorname{rk}(D)=\min _{\substack{D^{\prime} \sim D \\ \text { acyclic }}}\left\{\operatorname{deg}^{+}\left(D^{\prime}-D_{\mathcal{O}}\right)\right\}-1
$$

Proof. We first show that

$$
\operatorname{rk}(D)<\min _{\substack{D^{\prime} \sim D \\ \mathcal{O} \text { acyclic }}}\left\{\operatorname{deg}^{+}\left(D^{\prime}-D_{\mathcal{O}}\right)\right\}
$$

To see this, let $\left(D^{\prime}, \mathcal{O}\right)$ be a pair that achieves the minimum, let

$$
E^{+}=\sum_{v \in V(G), D^{\prime}(v)>D_{\mathcal{O}}(v)}\left(D^{\prime}(v)-D_{\mathcal{O}}(v)\right) v
$$

and $E^{-}=E^{+}-D^{\prime}+D_{\mathcal{O}}$. Note that both E^{+}and E^{-}are effective, and

$$
\operatorname{deg}\left(E^{+}\right)=\operatorname{deg}^{+}\left(D^{\prime}-D_{\mathcal{O}}\right)=\min _{\substack{D^{\prime} \sim D \\ \mathcal{O} \text { acyclic }}}\left\{\operatorname{deg}^{+}\left(D^{\prime}-D_{\mathcal{O}}\right)\right\}
$$

Rearranging the terms, we see that $D-E^{+} \sim D^{\prime}-E^{+}=D_{\mathcal{O}}-E^{-}$. Since \mathcal{O} is acyclic, the divisor $D_{\mathcal{O}}-E^{-}$is not equivalent to an effective divisor. Therefore, the rank of D is smaller than $\operatorname{deg}\left(E^{+}\right)$.

We now show that

$$
\operatorname{rk}(D) \geq \min _{\substack{D^{\prime} \sim D \\ \mathcal{O} \text { acyclic }}}\left\{\operatorname{deg}^{+}\left(D^{\prime}-D_{\mathcal{O}}\right)\right\}-1
$$

To see this, let E be an effective divisor of degree

$$
\operatorname{deg}(E)=\min _{\substack{D^{\prime} \sim D \\ \mathcal{O} \text { acyclic }}}\left\{\operatorname{deg}^{+}\left(D^{\prime}-D_{\mathcal{O}}\right)\right\}-1
$$

If $D-E$ is not equivalent to an effective divisor, then there exists an acyclic orientation \mathcal{O} such that $D_{\mathcal{O}}-(D-E)$ is equivalent to an effective divisor E^{\prime}. In other words, there exists a divisor $D^{\prime} \sim D$ such that $D_{\mathcal{O}}-D^{\prime}+E=E^{\prime}$. Rearranging, we see that $D^{\prime}-D_{\mathcal{O}}=E-E^{\prime}$. Therefore,

$$
\operatorname{deg}^{+}\left(D^{\prime}-D_{\mathcal{O}}\right)=\operatorname{deg}^{+}\left(E-E^{\prime}\right) \leq \operatorname{deg}(E)=\min _{\substack{D^{\prime} \sim D \\ \mathcal{O} \text { acyclic }}}\left\{\operatorname{deg}^{+}\left(D^{\prime}-D_{\mathcal{O}}\right)\right\}-1
$$

a contradiction. It follows that $D-E$ is equivalent to an effective divisor, and the result follows.

[^0]: Date: February 1, 2019.

