Basic Rules of Differentiation
The derivative of a function $f(x)$ at x is the rate at which $f(x)$ is changing at x. It is also the slope of the tangent line to the graph of $y=f(x)$ at the point $(x, f(x))$.
The formal definition is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Last time, we considered the function $f(x)=x^{\text {? }}$, and we computed $f^{\prime}(1)$.
Ex: Today, let's compute $f^{\prime}(x)$.

$$
\begin{aligned}
& f(x)=x^{2} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
= & \lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0} 2 x+h=2 x
\end{aligned}
$$

$$
\frac{d}{d x}\left[x^{2}\right]=2 x
$$

Ex: Let $f(x)=x^{n}$ where n is a nanegstive integer.
Compute $f^{\prime}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}=\lim _{h \rightarrow 0} \frac{(x+h) \cdot(x+h) \cdots(x+4)-x^{n}}{h} \\
&= \lim _{h \rightarrow 0} \frac{x^{n}+n \cdot h \cdot x^{n-1}+h^{2} \cdot[\text { stuff }]-x^{h}}{h} \\
&=\lim _{h \rightarrow 0} \frac{h \cdot h \cdot x^{n-1}+h^{2} \cdot[\text { stuff }]}{h} \\
&=\lim _{h \rightarrow 0} n \cdot x^{n-1}+h \cdot[\text { stuff }]=n x^{n-1}
\end{aligned}
$$

Power Rule: If n is a nonnegative inters, then $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$

Ex: What is the derivative of $f(x)=x^{71}$? Use the power rule with $n=71$.

$$
\frac{d}{d x}\left[x^{71}\right]=71 \cdot x^{71-1}=71 \cdot x^{70}
$$

Constant Multiple Rule: If c is a constrain| then $\frac{d}{d x}[c \cdot f(x)]=c \cdot \frac{d}{d x}[f(x)]$
why? $\frac{d}{d x}[c \cdot f(x)]=\lim _{h \rightarrow 0} \frac{c \cdot f(x+h)-c \cdot f(x)}{h}$

$$
\begin{aligned}
=\lim _{h \rightarrow 0} c \cdot \frac{f(x+h)-f(x)}{h} & =c \cdot \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =c \cdot \frac{d}{d x}[f(x)]
\end{aligned}
$$

Sum Rule:

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
$$

why? $\frac{1}{d x}[f(x)+g(x)]=\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)+f h}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
\end{aligned}
$$

Ex: Compute $\frac{d}{d x}\left[x^{3}+7 x^{2}-5 x+12\right]$

$$
=\frac{d}{d x}\left[x^{3}\right]+\frac{1}{d x}\left[7 x^{2}\right]+\frac{d}{d x}[-5 x]+\frac{d}{d x}[12]
$$

$\operatorname{cositinte}$

$$
=\frac{d}{d x}\left[x^{3}\right]+7 \frac{d}{d x}\left[x^{2}\right]-5 \frac{d}{d x}[x]+12 \frac{d}{d x}[1]
$$

Power
POWER

$$
\begin{aligned}
& =3 x^{2}+7 \cdot 2 x-5 \cdot 1+12 \cdot 0 \text { of is } 0 \\
& =3 x^{2}+14 x-5
\end{aligned}
$$

Ex: Compute $\frac{d}{d x}\left[x^{100}+31 x^{17}-3 x+5\right]$

$$
=\frac{d}{d x}\left[x^{100}\right]+\frac{d}{d x}\left[31 x^{17}\right]+\frac{d}{d x}[-3 x]+\frac{d}{d x}[s]
$$

$$
\begin{aligned}
& =\frac{d}{d x}\left[x^{100}\right]+31 \frac{d}{d x}\left[x^{17}\right]-3 \frac{d}{d x}[x]+\frac{d}{d x}[5] \\
& =100 \cdot x^{99}+31 \cdot 17 x^{16}-3 \cdot 1+0 \\
& =100 x^{99}+527 x^{16}-3
\end{aligned}
$$

WARNING! Derivative of a product is NOT the paduct of the derivatives!
Ex: $\frac{d}{d x}\left[x^{2}\right]=2 x$

$$
\frac{d}{d x}[x]=1
$$

$$
\frac{1}{d x}[x \cdot x] \quad \neq \frac{1}{d x}[x] \cdot \frac{1}{d x}[x]=1
$$

Next tire, well see hae to compute the derivative of a product of 2 functions.

