Limits of Functions
Ex: $f(x)=\frac{x^{2}-9}{x-3}$
Nut defined when $x=3$.

$$
y=\frac{x^{2}-9}{x-3}
$$

If x is very clause to 3 , then
y is very close to 6 .

$$
f(x)=\frac{x^{2}-9}{x-3}=\frac{(x+3)(x-3)}{x-3}
$$

If $x \neq 3$, you an cancel the $x-3$ form the numerator \& denominator, and we see that

$$
f(x)=x+3 \quad \text { if } \quad x \neq 3
$$

Not defined when $x=3$, but if x is close to 3 , then y is close to 6 .

We say that the limit of $f(x)$ as x approaches 3 is 6 and we wite $\lim _{x \rightarrow 3} f(x)=6$.
Ex: $g(x)= \begin{cases}x^{2} & \text { if } x \neq 2 \\ 3 & \text { if } x=2\end{cases}$
$y=g(x)$

$$
g(2)=3 .
$$

 to, but not equal to, 2 then the value of y is close to 4 .
Even though $g(2)=3$, the limit of $g(x)$ us x approaches 2 is 4 .

$$
\lim _{x \rightarrow 2} g(x)=4
$$

"Def": Let $f(x)$ be a function. If, when you plug in values of x that re close to,
but not equal to a, the values of $f(x)$ get arbiferrily close to L, then we say that the limit of $f(x)$ as x approaches a is L, and we wite

$$
\lim _{x \rightarrow a} f(x)=L
$$

Def: If, no natter how close you wont you to be to L, there is a distance from a such that for all $x \neq a$ within that distance fem a, $f(x)$ is within the gin dist ore form 2 , then $\lim _{x \rightarrow a} f(x)=L$.
WARNING! Not all functions have
Ex: $H(x)=\frac{|x|}{x}$. Not defined whim its! $x=0$.
What is $\lim _{x \rightarrow 0} H(x)$?
Recall $|x|=\left\{\begin{array}{ll}x & \text { if } x \geqslant 0 \\ -x & \text { if } x<0\end{array}\right.$.

$$
H(x)=\left\{\begin{array}{cl}
\frac{x}{x} & \text { if } x \geqslant 0 \\
\frac{-x}{x} & \text { if } x<0
\end{array}\right.
$$

$$
=\left\{\begin{array}{cl}
1 & \text { if } x>0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

So the values of $H(x)$ we NOT yetting closer to any specific value.
$\lim _{x \rightarrow 0} H(x)$ dues not exist.
Def: If, when you plug in values of x that are close to a and gent than a, the wales of $f\left(C_{C}\right)$ get close to L, we wite

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

If, when you plug in values of x that are close to a and smaller flan a, the rashes of
$f(x)$ get close to L, we wite

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

$\lim _{x \rightarrow a} f(x)$ exists if and only if $\lim _{x \rightarrow a^{-}} f(x)$ exists and $\lim _{x \rightarrow a^{+}} f(x)$ exist and $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$.
Ex: $f(x)=\sin \left(\frac{\pi}{x}\right)$.
Not defined when $x=0$.
What is $\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)$?

$$
\begin{array}{ll}
x=1 & \sin \left(\frac{\pi}{1}\right)=\sin (\pi)=0 \\
x=\frac{1}{2} & \sin \left(\frac{\pi}{\frac{1}{2}}\right)=\sin (2 \pi)=0 \\
x=\frac{1}{3} & \sin \left(\frac{\pi}{\frac{1}{3}}\right)=\sin (3 \pi)=0 \\
x=\frac{1}{4} & \sin \left(\frac{\pi}{\frac{1}{4}}\right)=\sin (4 \pi)=0
\end{array}
$$

$$
\begin{array}{ll}
x=2 & \sin \left(\frac{\pi}{2}\right)=1 \\
x=\frac{2}{5} & \sin \left(\frac{\pi}{\frac{2}{5}}\right)=\sin \left(\frac{5 \pi}{2}\right)=1 \\
x=\frac{2}{9} & \sin \left(\frac{\pi}{\frac{2}{7}}\right)=\sin \left(\frac{9 \pi}{2}\right)=1 \\
x=\frac{2}{13} & \sin \left(\frac{\pi}{\frac{2}{13}}\right)=\sin \left(\frac{13 \pi}{2}\right)=1 \\
x=\frac{2}{3} & \sin \left(\frac{\pi}{2}\right)=\sin \left(\frac{3 \pi}{2}\right)=-1 \\
x=\frac{2}{7} & \sin \left(\frac{\pi}{\frac{2}{7}}\right)=\sin \left(\frac{7 \pi}{2}\right)=-1
\end{array}
$$

No matter close you are to O, there is a value of x closer to 0 with
$\sin \left(\frac{\pi}{x}\right)=1$ and there is a ale of x closer to 0 with $\sin \left(\frac{\pi}{x}\right)=-1$ (and everything in between.)
Because these uslues re not getting closer to any specific nobler, we sym $\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)$ does cot exist.

