Ex: If c is a constant,

$$
\lim _{x \rightarrow a} c=c
$$

Ex: $\lim _{x \rightarrow a} x=a$
Limit Laws
Let $f(x), g(x)$ be functions and suppose $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} g(x)$ exists.
Then:

1) $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.
2) $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$.
3) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
4) If $\lim _{x \rightarrow a} g(x) \neq 0$, then

$$
\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}
$$

Ex:

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow 5}\left[x^{2}+3 x-4\right] \\
& =\lim _{x \rightarrow 5}\left[x^{2}\right]+\lim _{x \rightarrow 5}[3 x]+\lim _{x \rightarrow 5}[-4] \\
& \left.=\lim _{x \rightarrow 5}[x]\right]^{2}+3 \cdot \lim _{x \rightarrow 5}[x]+\lim _{x \rightarrow 5}[-4] \\
& \text { by }(3) \\
& =5^{2}+3 \cdot 5+(-4) \\
& =25+15-4=36 .
\end{aligned}
$$

This example shows that, if $p(x)$ is a polypunial, then $\lim _{x \rightarrow a} p(x)=p(a)$.
If $p(x)$ and $q(x)$ we polyaumins AND $q(a) \neq 0$, then

$$
\lim _{x \rightarrow a} \frac{p(x)}{g(x)}=\frac{p(a)}{q(a)} .
$$

Def: A function $f(x)$ is continuous at a number a if:

1) $f(x)$ is defined at a
2) $\lim _{x \rightarrow a} f(x)$ exists
3) $\lim _{x \rightarrow a} f(x)=f(a)$

A function $f(x)$ is called continuous it it is continuous at a for every a in its domain.
The following types of functions are continuous where they we defined:

- polynomials
- rational functions
- exporentials
- logarithms
- absdate value
- trig functions

Another way to think about continues functions.

continues hove

A function is continuous if there are no holes ar jumps or beats in the graph. You can $\mathrm{g}_{\mathrm{mph}} \mathrm{h}$ the function with at lifting your pencil off the per.

Ex: Consider the function

$$
f(x)= \begin{cases}x^{2} & \text { if } \\ 3 x<2 \\ 3 x+b & \text { if } x \geqslant 2 .\end{cases}
$$

For what value of b is $f(x)$ continuous?

Because x^{2} and $3 x+b$ we continuous fractions, $f(x)$ is cantinwus at every a except possibly $a=2$.

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left[x^{2}\right]=2^{2}=4 \\
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}[3 x+b]=6+b
\end{aligned}
$$

In order fur $\lim _{x \rightarrow 2} f(x)$ to exist, ve need $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$

$$
\begin{aligned}
& 4=6+b \\
& -2=b
\end{aligned}
$$

Want to choose b $\psi_{\text {so }}$ that the 0 lines up we 0 is at $2^{2}=4$

- is at $3.2+b$ $=6+b$

$$
4=6+b \quad-2=b
$$

Intermediate Value Theorem
Let $f(x)$ be a function that is continuous on $[a, b]$, and let z be a number between $f(a)$ and $f(b)$.
Then there exists a number c between a and b such that $f(c)=z$.

