Limits at Infinity
We write $\lim _{x \rightarrow \infty} f(x)=L$ if, for all very lame values of x, $f(x)$ is arbitearily close to L.
Def: We wite $\lim _{x \rightarrow \infty} f(x)=L$ if, for all $\varepsilon>0$, there is an N such that $f(x)$ is within ε of L for all $x>N$.
Ex: Compute $\lim _{x \rightarrow \infty} \frac{1}{x}$.
$\lim _{x \rightarrow \infty} \frac{1}{x}=0 \quad$ because if you plug in values of x that are sc loge, $\frac{1}{x}$ is very close to 0 .
More precisely, for my small pasitics number ε. (for example $\varepsilon=.001$), there is a number N (for exmple, $N=1000$)
with the peporty that, if $x>N$, then $0=\frac{1}{x}<\varepsilon$

$$
\begin{aligned}
& \text { Ex: } \lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+5}{x^{2}-7 x+2} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{2 x^{2}}{x^{2}}-\frac{3 x}{x^{2}}+\frac{5}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{7 x}{x^{2}}+\frac{2}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{2-\frac{3}{x}+\frac{5}{x^{2}}}{1-\frac{7}{x}+\frac{2}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}\left[2-\frac{3}{x}+\frac{5}{x^{2}}\right] \\
& \lim _{x \rightarrow \infty}\left[1-\frac{7}{x}+\frac{2}{x^{2}}\right] \\
& =\frac{\lim _{x \rightarrow \infty} 2-3 \lim _{x \rightarrow \infty}+0}{x \rightarrow 5\left[\lim _{x \rightarrow \infty} \frac{1}{x}\right]^{2}} 0
\end{aligned}
$$

$$
=\frac{2-3 \cdot 0+5 \cdot 0^{2}}{1-7 \cdot 0+2 \cdot 0^{2}}=\frac{2}{1}=2
$$

Ex: $\lim _{x \rightarrow \infty} \frac{x-7}{x^{2}+3} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{7}{x^{2}}}{1+\frac{3}{x^{2}}}=\frac{\lim _{x \rightarrow \infty} \frac{1}{x}-7\left[\lim _{x \rightarrow \infty} \frac{1}{x}\right]^{2}}{\lim _{x \rightarrow \infty} 1}+3\left[\begin{array}{lll}
{\left[\lim _{x \rightarrow \infty} \frac{1}{x}\right]^{2}}
\end{array}\right.
$$

$$
=\frac{0-7 \cdot 0^{2}}{1+3 \cdot 0}=\frac{0}{1}=0
$$

If $\frac{p(x)}{q(x)}$ is - rational function,

$$
\lim _{x \rightarrow \infty} \frac{p(x)}{q(x)}= \begin{cases}0 & \text { if } \operatorname{deg} p(x)<\operatorname{dg} g(x) \\ \frac{\operatorname{led} \operatorname{ding} \text { caff. } \operatorname{dep}}{\operatorname{led} \text { ing weft. } f q} \text { if } \operatorname{deg} p(x) \\ \text { does not exist if } & \operatorname{deg} q(x) \\ \operatorname{deg} p(x)>\operatorname{deg} g(x)\end{cases}
$$

You can also take the limit of a function as x goes to $-\infty$
We vita $\lim _{x \rightarrow-\infty} f(x)=L$ if, for every $\varepsilon>0$ there is an N with the property that $f(x)$ is within ε of C for all $x<N$.
Ex: $\lim _{x \rightarrow-\infty} e^{x}$
plug in $x=-1: \quad e^{-2}=\frac{1}{e^{1}}$

$$
\begin{array}{ll}
x=-100: & e^{-100}=\frac{1}{e^{100}} \underbrace{}_{\text {very sill }} \\
x=-1000 & e^{-1000}=\frac{1}{e^{1000}} T_{\text {pastie comer }}
\end{array}
$$

even smiles positive water
These numbers are getting closer nd closer to 0 , so $\lim _{x \rightarrow-\infty} e^{x}=0$.

Graphical Itterpectation of Limits at Infinity

Given a function $f(x)$, an asymptote is a line that the graph of $f(x)$ gets doses and clauses to.
Ex: $y=\frac{1}{x}$.

The graph of a function $y=f(x)$ has a horizantil asymptate at $y=L$ if und unly if eitler:
i) $\lim _{x \rightarrow e 0} f(x)=\square$ or
2) $\lim _{x \rightarrow-\infty} f(x)=L$.

