Chain Rule

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Alternative Furculatation:

$$
\begin{aligned}
& \text { If } y \text { is a function of } x \\
& \text { and } z \text { is a function of } y \\
& \frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}
\end{aligned}
$$

Ex: Compute $\frac{d}{d x}\left[(3 x+1)^{100}\right]$.
inside fraction $g(x)=3 x+1$
outside function $f(x)=x^{100}$

$$
\begin{aligned}
& f(g(x))=f(3 x+1)=(3 x+1)^{100} \\
& f(x)=x^{100} \quad g(x)=3 x+1 \\
& f^{\prime}(x)=100 x^{99} \quad g^{\prime}(x)=3 \\
& \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
&=100 \cdot g(x)^{99} \cdot 3=100 \cdot(3 x+1)^{99} \cdot 3 \\
&=300 \cdot(3 x+1)^{99}
\end{aligned}
$$

Ex: Compute $\frac{d}{d x}\left[\sqrt{\frac{x+1}{x-1}}\right]$.
outside function is $f(x)=\sqrt{x}$
inside function is $g(x)=\frac{x+1}{x-1}$

$$
\begin{aligned}
& f(g(x))=\sqrt{\frac{x+1}{x-1}} \\
& f(x)=\sqrt{x} \\
& g(x)=\frac{x+1}{x-1} \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
& \underset{\substack{\text { Quoritite }}}{g^{\prime}(x)}=\frac{(x-1) \frac{d}{d x}[x+1]-(x+1) \frac{d}{d x}[(x-1]}{(x-1)^{2}} \\
& =\frac{(x-1) \cdot 1-(x+1) \cdot 1}{(x-1)^{2}} \\
& =\frac{-2}{(x-1)^{2}} \\
& \frac{1}{d x}\left[\sqrt{\frac{x+1}{x-1}}\right] \stackrel{\substack{\text { CHaiN } \\
\text { Rule }}}{=} f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =\frac{1}{2 \sqrt{g(x)}} \cdot\left(-\frac{2}{(x-1)^{2}}\right) \\
& =\frac{1}{2 / \sqrt{\frac{x+1}{x-1}}} \cdot\left(\frac{-2}{(x-1)^{2}}\right) \\
& =\frac{-\sqrt{\frac{x-1}{x+1}}}{(x-1)^{2}}=\frac{-\sqrt{\frac{1}{x+1}}}{(x-1)^{3 / 2}} \\
& =\frac{-1}{(x+1)^{1 / 2}(x-1)^{3 / 2}}
\end{aligned}
$$

Ex: Compete $\frac{d}{d x}\left[3\left(x^{2}+5 x\right)^{2}+2\left(x^{2}+5 x\right)+7\right]$ $\begin{aligned} & \text { without the } \\ & \text { chan rule }\end{aligned}=\frac{d}{d x}\left[3 x^{4}+30 x^{3}+75 x^{2}+2 x^{2}+10 x+7\right]$

$$
=3 \cdot 4 x^{3}+30 \cdot 3 x^{2}+75 \cdot 2 x+2 \cdot 2 x+10
$$

$$
l=12 x^{3}+90 x^{2}+154 x+10
$$

with the chain inside function is $g(x)=x^{2}+5 x$
outride function is $f(x)=3 x^{2}+2 x+7$

$$
\begin{aligned}
& \frac{d}{d x}\left[3\left(x^{2}+5 x\right)^{2}+2\left(x^{2}+5 x\right)+7\right]=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =\left(6\left(x^{2}+5 x\right)+2\right) \cdot(2 x+5) \\
& =\left(6 x^{2}+30 x+2\right) \cdot(2 x+5) \\
& =12 x^{3}+60 x^{2}+30 x^{2}+150 x+4 x+10 \\
& =12 x^{3}+90 x^{2}+154 x+10
\end{aligned}
$$

Ex: Compute $\frac{d}{d x}\left[\sqrt{\sqrt{7 x^{2}+5}+1}\right]$
outside function $f(x)=\sqrt{x}$
inside function $g(x)=\sqrt{7 x^{2}+5}+1$

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
g(x)=\sqrt{7 x^{2}+5}+1
$$

$g^{\prime}(x)$ is itself a composition of functions, so to coupe it, we need to use the chin rule Again.

$$
\begin{array}{rlrl}
f_{1}(x) & =\sqrt{x}+1 & & g_{1}(x)=7 x^{2}+5 \\
f_{1}^{\prime}(x) & =\frac{1}{2 \sqrt{x}} & & g_{1}^{\prime}(x)=14 x \\
g(x) & =f_{1}\left(g_{1}(x)\right) & \text { so br the CHARN RULE, } \\
g^{\prime}(x) & =f_{1}^{\prime}\left(g_{1}(x)\right) \cdot g_{1}^{\prime}(x) \\
& =\frac{1}{2 \sqrt{7 x^{2}+5}} \cdot 14 x=\frac{7 x}{\sqrt{7 x^{2}+5}}
\end{array}
$$

By the chain rule AGAIN,

$$
\begin{aligned}
\frac{d}{d x}[f(g(x))] & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =\frac{1}{2 \sqrt{\sqrt{7 x^{2}+5}+1}} \cdot \frac{7 x}{\sqrt{7 x^{2}+5}}
\end{aligned}
$$

Iterated Chain Rule

$$
\frac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

Alternative Formulation

$$
\begin{aligned}
& \text { It } y \text { is a function of } x \text { and } \\
& z \text { is a function of } y \text { ad } \\
& w \text { is a function of } z \text {, then } \\
& \frac{d w}{d x}=\frac{d w}{d z} \cdot \frac{d z}{d y} \cdot \frac{d y}{d x}
\end{aligned}
$$

Higher Deriontives
If $f(x)$ is a function, the derivation of the derivative of $f(x)$ is called the second derivative of $f(x)$, nd wotton

$$
\begin{array}{r}
f^{\prime \prime}(x) \\
\text { or } f^{(2)}(x)
\end{array}
$$

The derivative of that is called the third deinatice, and written $f^{\prime \prime \prime}(x)$ or $f^{(3)}(x)$.
AND So ON.
Ex: Compute the $2^{1 d}$ derivative of $f(x)=7 x^{2}+3 x+1$

$$
\begin{aligned}
& f^{\prime}(x)=14 x+3 \\
& f^{\prime \prime}(x)=14
\end{aligned}
$$

$$
f^{\prime \prime \prime}(x)=0
$$

If $f(x)=$ distance travelled by tine x $f^{\prime}(x)=$ sate at which distance is changing at time x
$=$ velocity at time x
$f^{\prime \prime}(x)=$ rate it which velocity at time x acceleration at tine x

