Implicit Differentiation
Course Survey closes un Monday on Canvas under Quizzes
Usually we define a function explicitly

$$
\begin{aligned}
y=f(x) \quad \text { ex: } y & =3 x^{2}+5 x \\
\frac{d y}{d x} & =3 \cdot 2 x+5 \cdot 1 \\
& =6 x+5
\end{aligned}
$$

Sonetines an equation defines y implicitly as a function of x.
Ex: $\quad x^{2}+y^{2}=1$.
What is the slope of the tangat line to the mit circle at the point (x, y) ?
Same is ashing: what is $\frac{d y}{d x}$?

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
\frac{d}{d x}\left[x^{2}+y^{2}\right]=\frac{d}{d x}[1]
\end{gathered}
$$

Take the derivative of both sides with respect to X.
Remember that y is a function of x_{1} so

$$
2 x+2 y \cdot \frac{d y}{d x}=0
$$ when taking the derivative of expression in induing

CHAIN y) you line to
RULE sse the chain cole.

$$
2 y \frac{d y}{d x}=-2 x
$$ Solve for $\frac{d y}{d x}$.

$$
\frac{d y}{d x}=\frac{-2 x}{2 y}=\frac{-x}{y}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-x}{y} \\
& =\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{72}} \\
& =\frac{-1}{\sqrt{3}}
\end{aligned}
$$

Ex: The function y is given implicitly by the equation $\quad x^{2}+3 x y+y^{2}=5$.
Find $\frac{d y}{d x}$.
Take $\frac{d}{d x}[-]$ of $\frac{d}{d x}\left[x^{2}+3 x y+y^{2}\right]=\frac{d}{d x}[5]$ butt sides

$$
2 x+3 x \cdot \frac{d y}{d x}+3 \cdot y+2 \cdot y \cdot \frac{d y}{d x}=0
$$

product rule
CHAIN
applied to $(3 x)(y)$
Solve for $\frac{d y}{d x}$

$$
\begin{aligned}
& 3 x \frac{d y}{d x}+2 y \frac{d y}{d x}=-2 x-3 y \\
& (3 x+2 y) \frac{d y}{d x}=-2 x-3 y \\
& \frac{d y}{d x}=\frac{-2 x-3 y}{3 x+2 y}
\end{aligned}
$$

If we wanted to find $\frac{d y}{d x}$ when $(x, y)=(1,1)$,

$$
\frac{d y}{d x}=\frac{-2 \cdot 1-3 \cdot 1}{3 \cdot 1+2 \cdot 1}=\frac{-5}{5}=-1
$$

Ex: $y^{2}=x^{3}$. Find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \frac{d}{d x}\left[y^{2}\right]=\frac{d}{d x}\left[x^{3}\right] \\
& 2 y \frac{d y}{d x}=3 x^{2} \\
& \frac{d y}{d x}=\frac{3 x^{2}}{2 y} .
\end{aligned}
$$

T This is undefined when $(x, y)=(0,0)$ But $\lim _{x \rightarrow 0} \frac{3 x^{2}}{2 y}$ is defined. (It's equal to c.)
Power Rule for Rational Powers

$$
y=x^{p / q}
$$

pi whole numbers
Find $\frac{d y}{d x}$.

Raise both sides to the $q^{\text {th }}$ power:

$$
y^{q}=x^{p}
$$

Take the derivative of both sides.

$$
\begin{aligned}
& \frac{d}{d x}\left[y^{q}\right]=\frac{d}{d x}\left[x^{p}\right] \\
& q y^{q-1} \frac{d y}{d x}=\frac{p x^{p-1}}{\text { PoWER }}
\end{aligned}
$$

Solve for $\frac{d y}{d x}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{p}{q} \cdot \frac{x^{p-1}}{y^{q-1}}=\frac{p}{q} \cdot \frac{x^{p-1}}{\left(x^{p / q}\right)^{q-1}} \\
& =\frac{p}{q} \cdot \frac{x^{p-1}}{x^{p-p / q}}=\frac{p}{q} \cdot x^{p-1} \cdot x^{p / q-p} \\
& =\frac{p}{q} \cdot x^{p-1+p / q-p}=\frac{p}{q} x^{p / q-1}
\end{aligned}
$$

Puver Rule for Rational Pours:

$$
\frac{d}{d x}\left[x^{n}\right]=n \cdot x^{n-1} \quad \text { for my } \quad \text { number } \frac{\text { national }}{n} .
$$

