Related Rates
Today is the last day to fill out the course (on Canvas under Quizzes) survey

Ex: The radius of a circular puddle is increasing at a cate of $3 \mathrm{~m} /$ hour. When the radius of the puddle is 2 m , how quickly is the area of the puddle increasing?
(1)Draw a picture

$$
\begin{aligned}
& r=\text { radius } \\
& A=\text { area }
\end{aligned}
$$

(2) What are sue give?

What are we trying to find?
Given: $\frac{d r}{d t}=3 \mathrm{~m} / \mathrm{hour}$
want: Find $\frac{d A}{d t}$ when $r=2 \mathrm{~m}$.
(3) Write down on expression that relates the relevant for dims.

$$
A=\pi \cdot r^{2}
$$

(4) Take the derivative of both sides. (Remember to use the chain rule.)

$$
\begin{aligned}
& \frac{d}{d t}[A]=\frac{d}{d t}\left[\pi r^{2}\right] \\
& \frac{d A}{d t}=2 \pi r \cdot \frac{d r}{d t} \text { CHAIN } \text { RULE }
\end{aligned}
$$

(5) Plug in

$$
\frac{d A}{d t}=2 \pi \cdot 2 \cdot 3=12 \pi \mathrm{~m}^{2} / h_{\text {our }} .
$$

Ex: A loft ladder is propped against a wall. If the base of the Indter slips away from the wall at a cate of $1 \mathrm{ft} / \mathrm{s}$, how quickly is the top of the ladder falling when the top of the ladder is 8 ft from the floor?
(1) Draw a picture and label all the impotent variables

(2) What are you given?

What are you trying to find? Want to find:

$$
\frac{d y}{d t} \text { when } y=8 \mathrm{ft}
$$

(3) Write down on expression relating the variables

$$
x^{2}+y^{2}=10^{2} \quad \text { (Pythagoren Theorem) }
$$

(4) Take the derivative of bath sides

$$
\begin{aligned}
& \frac{d}{d t}\left[x^{2}+y^{2}\right]=\frac{d}{d t}[100] \\
& 2 x \cdot \frac{d x}{d t}+2 y \frac{d y}{d t}=0
\end{aligned}
$$

(5) Plug in

$$
\begin{array}{cc}
\frac{d y}{d t}=1, y=8 & \text { to find } \frac{d y}{d t} \\
x^{2}+y^{2}=100 & \\
x^{2}+8^{2}=100 & x^{2}+64=100 \\
& x^{2}=36 \\
& x=6 \\
2 \cdot 6 \cdot 1+2 \cdot 8 \cdot \frac{d y}{d t}=0
\end{array}
$$

$$
\begin{aligned}
& 12+16 \cdot \frac{d y}{d t}=0 \quad 16 \frac{d y}{d t}=-12 \\
& \frac{d y}{d t}=\frac{-12}{16}=\frac{-3}{4} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Ex: A water tank is shaped like in inverted cone with height 12 m and base sardius 9 m . Water is pumped in at a rate of $2 \mathrm{~L} /$ hour. At whit rate is the depth of the eater increasing when the depth is 4 m ?
(1) Draw a picture and hel all u-nibles

(2) Whit re we given?

What re e we trying to fid?
Give: $\frac{d V}{d t}=2$ L/hour wont to find: $\frac{d h}{d t}$ when $K=4_{\mathrm{n}}$.
(3) Write damn an expression relating the variables.

$$
V=\frac{1}{3} \pi h r^{2}
$$

Formula for the volume of a cone
It would be nike to simplify this expression to eliminate the variable r.

$$
\frac{r}{h}=\frac{9}{12}=\frac{3}{y} \quad r=\frac{3}{4} h
$$

$$
\begin{aligned}
& V=\frac{1}{3} \pi h r^{2}=\frac{1}{3} \pi h\left(\frac{3}{4} h\right)^{2} \\
& V=\frac{3}{16} \pi h^{3}
\end{aligned}
$$

(4) Take the derivative of both sides

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d}{d t}\left[\frac{3}{16} \pi h^{3}\right] \\
& \frac{d V}{d t}=\frac{3}{16} \pi \cdot 3 h^{2} \cdot \frac{d h}{d t}=\frac{9}{16} \pi h^{2} \frac{d h}{d t}
\end{aligned}
$$

(5) Ploy in

$$
\begin{aligned}
& 2=\frac{9}{16} \pi \cdot y^{2} \cdot \frac{d h}{d t} \\
& 2=9 \pi \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{2}{9 \pi} \mathrm{~m} / h_{\text {our }}
\end{aligned}
$$

