MA 137 - Lecture 2
First Exam IN CLASS Feb. $2^{\text {nd }}$
If you need to contact me: dave. h. jensen @gmail.iom Office Hours: MW 12:30-2 Zoom

Not TODAY
Also: TA Office Hours
Mathaskellar - in the basement of $C B$

$$
M-F \quad 9-4
$$

The Study
Exponential Functions
An exponential function is a function of the form $f(x)=a^{x}$, where a is a constant.
Ex: $f(x)=2^{x} \cdot \quad$ Ex: $f(x)=\left(\frac{1}{3}\right)^{x}$
What does that mean?
If x is a positive whole number, then

$$
\Rightarrow a^{a^{x}=\underbrace{a \cdot a \cdot a \cdots a}_{x \text { tines }} \quad \begin{array}{rl}
\text { Ex: } & 2^{5}
\end{array}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} \begin{array}{l}
\\
\end{array}] 32 .
$$

Properties of Exponentials:
(1) $a^{x+y}=a^{x} \cdot a^{y}$
$\begin{aligned} \text { why }^{?} \cdot a^{a^{x+y}=}=\underbrace{a \cdot a \cdot a \cdots a}_{x+y \text { times }} & =(\underbrace{a \cdot a \cdots a)}_{x^{x \text { times }}} \cdot(\underbrace{a \cdot a \cdots a)}_{y \text { tines }} \\ & =a^{a^{x} \cdot a^{y}}\end{aligned}$
(2) $a^{0}=1$.
why? $\mathscr{L}^{0}=a^{0+0}=a^{0} \cdot a^{\sigma}$
D wide both sides by a^{0}

$$
1=\quad a^{0}
$$

(3) $a^{-x}=\frac{1}{a^{x}}$.

Why? $1 \stackrel{\text { (2) }}{=} 0=a^{x+(-x)}$
(1) $a^{x} \cdot a^{-x}$
$=$

Divide both sides by a^{x}.
$\frac{1}{a^{x}}=a^{-x}$
(4) $(a \cdot b)^{x}=a^{x} \cdot b^{x}$

Why? $(a \cdot b)^{x}=(a \cdot b) \cdot(a \cdot b) \cdots(a \cdot b)$

$$
=\underbrace{(a \cdot a \cdots a)}_{x \text { times }}(\underbrace{(b \cdots b)}_{x \text { times }}=a^{x} \cdot b^{x}
$$

(5) $a^{x \cdot y}=\left(a^{x}\right)^{y}$

Why! $\quad a^{x \cdot y}=\underbrace{a \cdot a \cdot a \cdots a}_{x \cdot y \text { tines }}=$

$$
\begin{aligned}
& =\underbrace{\underbrace{a^{x}}_{y \text { times }}}_{\underbrace{(a \cdot a \cdots a)}_{x \text { tines }} \cdot \underbrace{(a \cdot a \cdots . \cdot)}_{x \text { tines }} \cdots \underbrace{(a \cdot a \cdots a)}_{x \text { tines }}}=\left(a^{x}\right)^{y}
\end{aligned}
$$

(b) $a^{1 / x}=\sqrt[x]{a}$

Why? $a=a^{1}=a^{1 / x \cdot x} \stackrel{(5)}{=}\left(a^{1 / x}\right)^{x}$
Take the $x^{\text {th }}$ root of both sides

$$
\sqrt[x]{a}=a^{1 / x}
$$

Graph of an Exponential Function

Function Composition
If $f(x)$ and $g(x)$ we functions, their composition is $[f \circ g](x):=f(g(x))$

$$
\begin{aligned}
& \text { Ex: } f(x)=3 x+2 \quad g(x)=x^{2} \\
& {[f \circ g](x)=f(g(x))=f\left(x^{2}\right)=3 x^{2}+2} \\
& {[g \circ f](x)=g(f(x))=g(3 x+2)=(3 x+2)^{2}} \\
& =9 x^{2}+12 x+4
\end{aligned}
$$

Notice: $f \circ g \neq g \circ f$!
Inverse Functions
Let $f(x)$ be a function. A function $g(x)$ is called the inverse of $f(x)$ if: $[f \circ g](x)=[g \circ f(x)=x$.
In other words, the inverse function under the lidia
Ex: $f(x)=x^{3}$.
The inverse of $f(x)$ is $g(x)=\sqrt[3]{x}$.
Ex: Find the inverse of $f(x)=\frac{3 x+2}{x-5}$.
WARNING! Not all functions have inverses!

$$
\begin{aligned}
\text { Ex: } f(x) & =x^{3}-x . \\
f(0) & =0^{3}-0=0 . \\
f(1) & =1^{3}-1=0 .
\end{aligned}
$$

If $f(x)$ had an in verse $g(x)$, then $g(0)$ would have to be the number x that satisfies $f(x)=0$.
There isn't just one number with this property!
The function $f(x)$ is not one-to-one.
A function $f(x)$ is one-to-one if, whenever $f(a)=f(b)$, then $a=b$.

