Logarithmic Differentiation
Find the derivative of $y=\ln (x)$.

$$
\begin{gathered}
e^{y}=x \\
\frac{d}{d x}\left[e^{y}\right]=\frac{1}{d x}[x] \\
e^{y \cdot \frac{d y}{d x}=1} \\
\frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x} \\
\frac{d}{d x}[\ln (x)]=\frac{1}{x}
\end{gathered}
$$

Ex: Compute the derivative of $\log _{a}(x)$. CHANGE OF BASE FORMULA

$$
\begin{aligned}
& \log _{a}(x)=\frac{\ln (x)}{\ln (a)} \\
& \frac{d}{d x}\left[\log _{a}(x)\right]=\frac{d}{d x}\left[\frac{\ln (x)}{\ln (a)}\right]=\frac{1}{\ln (a)} \cdot \frac{d}{d x}[\ln (x)] \\
& =\frac{1}{\ln (a)} \cdot \frac{1}{x}
\end{aligned}
$$

Logarithmic Differatiation
Compute the derivative of a function by taking the In of both rides and using properties of logarithms.
Ex: Compete the derivative of $y=x^{x}$
(1) take in of bath sides dor iva (3) of e poetics of logs

$$
\ln (y)=\ln \left(x^{(3)} x\right)=x \cdot \ln (x) \text { prese derivative of bin side sides }
$$

$$
\frac{d}{d x}[\ln (y)]=\frac{d}{d x}\left[{ }_{\text {PRODUCT }}[x \cdot \ln (x)]\right.
$$

$$
\frac{1}{y} \cdot \frac{d y}{d x}=x \cdot \frac{d}{d x}[\ln (x)]+\ln (x) \cdot \frac{d}{d x}[x]
$$

$$
=x \cdot \frac{1}{x}+\ln (x) \cdot 1
$$

$$
=1+\ln (x)
$$

$$
\frac{d y}{d x}=(1+\ln (x)) \cdot y=(1+\ln (x)) \cdot x^{x}
$$

Ex: Compute the deviantive of $y=\sin (x)^{x}$.
(1) Take in of both sides
(2) us apprise of

$$
\ln (y)=\ln \left(\sin (x)^{x}\right)=x \cdot \ln (\sin (x))^{\log 5}
$$

(3) Take the derivative of beth sides

$$
\begin{aligned}
& \frac{d}{d x}[\ln (y)]=\frac{d}{d x}[x \cdot \ln (\sin (x))] \\
& \begin{aligned}
\frac{1}{y} \cdot \frac{d y}{d x} & =x \cdot \frac{d}{d x}[\ln (\sin (x))]+\ln (\sin (x)) \cdot \frac{d}{d x}[x] \\
& =x \cdot\left[\frac{1}{\sin (x)} \cdot \frac{d}{d x}[\sin (x)]\right]+\ln (\sin (x)) \cdot \frac{d}{d x}[x] \\
& =x \cdot \frac{1}{\sin (x)} \cdot \cos (x)+\ln (\sin (x)) \cdot 1 \\
& =x \cot (x)+\ln (\sin (x))
\end{aligned} \\
& \begin{aligned}
\frac{d y}{d x} & =[x \cot (x)+\ln (\sin (x))] \cdot y
\end{aligned}
\end{aligned}
$$

(4) Plug bed in for y

$$
\frac{d y}{d x}=[x \cot (x)+\ln (\sin (x))] \cdot \sin (x)^{x}
$$

Ex: Compute the derivative of $y=\frac{\sqrt{x+3} \cdot(x-1)^{3 / 5}}{(x+7)^{2 / 3}}$
(1) Take In of both sides

$$
\ln (y)=\ln \left(\frac{(x+3)^{1 / 2} \cdot(x-1)^{3 / 5}}{(x+7)^{2 / 3}}\right)
$$

(2) Use properties of logs to simplify

$$
\begin{aligned}
& =\ln \left((x+3)^{1 / 2} \cdot(x-1)^{3 / 5}\right)-\ln \left((x+7)^{2 / 3}\right) \\
= & \ln \left((x+3)^{1 / 2}\right)+\ln \left((x-1)^{3 / 5}\right)-\ln \left((x+7)^{2 / 3}\right) \\
= & \frac{1}{2} \ln (x+3)+\frac{3}{5} \ln (x-1)-\frac{2}{3} \ln (x+7)
\end{aligned}
$$

(3) Take the derivative of both sides

CNotice: this is way easier then it would hare seen at the start bla Sun Rule is "casier" then the Product \& Quoutint Rules)

$$
\begin{aligned}
& \frac{d}{d x}[\ln (y)]=\frac{2}{d x}\left[\frac{1}{2} \ln (x+3)+\frac{3}{5} \ln (x-7)-\frac{2}{3} \ln (x+7)\right] \\
& \frac{1}{y} \cdot \frac{d y}{d x}=\frac{1}{2} \cdot \frac{1}{x+3} \cdot \frac{d}{d x}[x+3]+\frac{3}{5} \cdot \frac{1}{x-1} \cdot \frac{d}{d x}[x-1]-\frac{2}{3} \cdot \frac{1}{x+7} . \\
& =\frac{1}{2} \cdot \frac{1}{x+3}+\frac{3}{5} \cdot \frac{1}{x-1}-\frac{2}{3} \cdot \frac{1}{x+7} \\
& \frac{d y}{d x}=\left[\frac{1}{2(x+3)}+\frac{3}{5(x-1)}-\frac{2}{3(x+7)}\right] \cdot y
\end{aligned}
$$

(4) Plug back in for y

$$
\frac{d y}{d x}=\left[\frac{1}{2(x+3)}+\frac{3}{5(x-1)}-\frac{2}{3(x+7)}\right] \cdot \frac{\sqrt{x+3} \cdot(x-1)^{3 / 5}}{(x+7)^{2 / 3}}
$$

Power Rule, revisited
We le computed $\frac{d}{d x}\left[x^{4}\right]$ when n is wy rational number. Using logarithmic differentiation, we an compute it for any real number n.

$$
y=x^{n}
$$

(1) Take ln of both sides
(2) Use prepoties of $\log _{\text {simp }} \mathrm{s}_{\mathrm{ta}}$ to

$$
\ln (y)=\ln \left(x^{n}\right)=n \cdot \ln (x)
$$

(3) Take the derivative of both rides

$$
\begin{aligned}
& \frac{d}{d x}[\ln (y)]=\frac{d}{d x}[n \cdot \ln (x)]=n \cdot \frac{d}{d x}[\ln (x)] \\
& \frac{1}{y} \frac{d y}{d x}=\frac{n}{x} \\
& \frac{d y}{d x}=\frac{n}{x} \cdot y
\end{aligned}
$$

(4) Plug back in for y

$$
\frac{d y}{d x}=\frac{n}{x} \cdot x^{n}=n x^{n-1}
$$

Most general form of the punner role: $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \quad$ for $\frac{\text { any real number }}{}{ }^{n}$.

