Exam 3 moved to Monday, April 11
Final Project due Malay, April 18 on Comas
Last time:
Any continuous function $f(x)$ an a closed intercut has a maximum and a minimum.

Where could this max or min be?
(2) $f^{\prime}(x)=0$
(2) $f^{\prime}(x)$ is not defined
(3) endpoints of the internal

Ex: Find local maxima and minion of $f(x)=x^{3}-x$ on $[-2,2]$.
(1) Where is $f^{\prime}(x)=0$?

$$
\begin{aligned}
f^{\prime}(x)=3 x^{2} & -1=0 \\
3 x^{2} & =1 \\
x^{2} & =\frac{1}{3} \quad x= \pm \sqrt{\frac{1}{3}}
\end{aligned}
$$

(2) Whore is $f^{\prime}(x)$ undefined? $f^{\prime}(x)$ is defined eurywhire.
(3) Where are the adpuints? $-2,2$.

$$
\begin{aligned}
& f(-2)=(-2)^{3}-(-2)=-8+2=-6 \\
&\left.\begin{array}{rl}
f\left(-\sqrt{\frac{1}{3}}\right)= & \left(-\sqrt{\frac{1}{3}}\right)^{3}-\left(-\sqrt{\frac{1}{3}}\right)
\end{array}\right)=-\frac{1}{3} \cdot \sqrt{\frac{1}{3}}+\sqrt{\frac{1}{3}} \\
&=\frac{2}{3} \sqrt{\frac{1}{3}} \approx 0.38 \\
& f\left(\sqrt{\frac{1}{3}}\right)=-\frac{2}{3} \sqrt{\frac{1}{3}} \approx-0.38 \\
& f(2)=6
\end{aligned}
$$

Since - 6 is the smallest of these y values, the global min is at $x=-2$.
Since 6 is the largest of these Y value, the glob, mex is at $x=2$

WARNING! You can have $f^{\prime}(c)=0$ without having - |cal max or min at c.
Ex: $f(x)=x^{3}$.

$$
\begin{aligned}
f^{\prime}(x)=3 x^{2}=0 \text { when } x^{2} & =0 \\
x & =0
\end{aligned}
$$

But if $x>0$, then $f(x)=x^{3}>0$.
if $x<0$, then $f(x)=x^{3}<0$.

Sole's Theorem: Let $f(x)$ be a continuous, differatiable on the closed interval $[a, b]$. Suppose that $f(a)=f(b)$.
Then there is a number c between a and b such that $f^{\prime}(c)=0$.

Why is Rolls's Theorem true?
Since $f(x)$ is continosos on $[a, b]$, we known that $f(x)$ has both a global ax and a global min on $[a, b]$.

If the global sax or min occurs at a number $a<c<b$, then $f^{\prime}(c)=0$.
(because c is nut an endpoint and $f^{\prime}(x)$ is defined on the whale interval.)
Were done unless the global max and global min occur at the endpoints.
But, $f(a)=f(b)$. So If the global ax occues at ane endpoint nd the global min occurs at the other, then the global mix is equal t, the global min. (Both are equal to $f(a)=f(b))$

In this case, $f(x)$ is the constant function $f(a)$. Then $f^{\prime}(c)=0$ for every c in the interval $[a, b]$.
Mew n Value Theorem: Let $f(x)$ be a continuous, differatiable function on the closed introal $[a, b]$.
Then there is a number 6 between a and b

$$
\text { such that } f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Ex: If I drive from Lexington to Lacisuille and my aurage speed is 70 mph , then at sure point along the trip, ry instantmeors speed will be 70 mph.

Why is the MVT true?
Consider a new function

$$
g(x)=f(x)-\underbrace{\left(\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right)}_{\text {equation for the pith }}
$$

$g(x)$ is continuous $[a b$ line in the picture and differatioble on $[9, b]$

$$
\begin{aligned}
g(a) & =f(a)-\left(\frac{f(b)-f(a)}{b-a}(a-a)+f(a)\right) \\
& =0 \\
g(b) & =f(b)-\left(\frac{f(b)-f(a)}{b-a}(b-a)+f(a)\right) \\
& =f(b)-f(b)=0 . \\
g(a) & =g(b) .
\end{aligned}
$$

so Role's Theorem says there is a C where $g^{\prime}(c)=0$.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left[f(x)-\left(\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right)\right] \\
& =f^{\prime}(x)-\frac{f(b)-f(a)}{b-a} \\
U^{=} g^{\prime}(c) & \left.=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}\right)
\end{aligned}
$$

$$
f^{\prime}(c)=\frac{f(5)-f(a)}{b-a}
$$

$$
\square
$$

