Monotonicity and Concavity
Reminder: Exam 3 in class Mandy, April II Final project due on Camus) Mandy, April 18
 interval if the graph gees up as you go from left to right.
Mure fornlly, $f(x)$ is increasing at x if for soil positive numbers ε, we have $f(x)<f(x+\varepsilon)$.
Similarly, be say that a function $f(x)$ is decreasing on an interval if the graph goes down as yuan y^{0} from left to right.
More form, ll, $f(x)$ is decrening at x if, for sail positive numbers $f(x)$, we hue $f(x)>f(x+\varepsilon)$ A differatioble function ${ }^{f(x)}$ is incensing at x if $f^{\prime}(x)>0$. It is decreasing at x if $f^{\prime}(x)<0$.

Ex: Find the intervals on which $f(x)=x^{3}-x$ is increasing and the intervals on which it is decreasing.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-1 \\
& 3 x^{2}-1=0 \quad \text { when } \quad \\
& 3 x^{2}=1 \\
& x^{2}=\frac{1}{3} \\
& x= \pm \sqrt{\frac{1}{3}} \\
& f^{\prime}(x)=3 x^{2}-1=3\left(x-\sqrt{\frac{1}{3}}\right)\left(x+\sqrt{\frac{1}{3}}\right)
\end{aligned}
$$

Where is $f^{\prime}(x)>0$?

$3\left(x-\sqrt{\frac{1}{3}}\right)\left(x+\sqrt{\frac{1}{3}}\right)$

is negative on $\left(-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right)$
$f(x)=x^{3}-x$ is increasing on $\left(-\infty,-\sqrt{\frac{1}{3}}\right) u$

$$
\left(\sqrt{\frac{1}{3}}, \infty\right)
$$

and is decreasing on $\left(-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right)^{\frac{1}{3}}$

A function $f(x)$ hi a local maximum at x if it is increasing to the left of x and decreasing to the right of x.
Similarly, it has a local minimum at x if it is decreasing to the left and increasing to He eight.
First Derivative Test:
If $f^{\prime}(x)$ goes from positive to negative at x_{1} then x is a local max of $f(x)$.
If $f^{\prime}(x)$ yous from negative to positive of x, then x is a local min of $f(x)$.

Ex: Let $f(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x$.
where is $f(x)$ increaring?
where is $f(x)$ decreasing?
Whose are the local maximin, and minim?

$$
\begin{aligned}
& f^{\prime}(x)=x^{2}-3 x+2 \\
& x^{2}-3 x+2=0 \quad \text { when } x=\frac{3 \pm \sqrt{(-3)^{2}-4 \cdot 1 \cdot 2}}{2 \cdot 1} \\
& =\frac{3 \pm \sqrt{1}}{2}=\frac{3 \pm 1}{2}=1,2 \\
& f^{\prime}(x)=x^{2}-3 x+2=(x-1)(x-2) \text {. } \\
& x-1 \\
& x-2 \\
& (x-1)(x-2) \\
& f^{\prime}(x)=(x-1)(x-2) \text { is positive on }(-\infty, 1) \cup(2, \infty) \\
& \text { and negrti-e on }(1,2) \text {. } \\
& f(x) \text { is increasing on }(-\infty, 1) \cup(2, \infty) \\
& \text { and decreasing on }(1,2)
\end{aligned}
$$

At $x=1, f(x)$ gees from increasing to decreasing, so $x=1$ is a local ax.
At $x=2, f(x)$ gees from decreasing to increasing, so $x=2$ is a \mid oral min.
$E x: f(x)=x^{3}$. Where is $f(x)$ incensing? Where is $f(x)$ decreasing?

$$
f^{\prime}(x)=3 x^{2}
$$

$f^{\prime}(x)=0$ when $x=0$.
if $x \neq 0$, then $f^{\prime}(x)=3 x^{2}>0$.
So $f(x)$ is increasing on $(-x, 0) \cup(0, \infty)$. So $x=0$ is nut a local max or a local

Concavity

waee the gopl
$f(x)$ is concure up
$=f^{\prime}(x)$ is increasing

$$
=f^{\prime \prime}(x)>0
$$

belw the graph
$f(x)$ is concu-e down
$=f^{\prime}(x)$ is dereasing
$=f^{\prime \prime}(x)<0$

A twice-differentinble function is concoue up at x if $f^{\prime \prime}(x)>0$ and it is concure doen at a if $f^{\prime}(x)<0$.

