Exam 3 IN CLASS Mandy, April II Final Project due on Canvas Monday, April 18
Inflection Points

Concave up

concave down

A function $f(x)$ is concave up at x if $f^{\prime \prime}(x)>0$
It is concave down at x if $f^{\prime \prime}(x)<0$.
Ex: $f(x)=x^{3}$. When is it concave up and when is it concre down?

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime \prime}(x)=3 \cdot 2 x=6 x \\
& f^{\prime \prime}(x)=6 x>0 \quad \text { when } x>0 \\
& \quad 6 x<0 \quad \text { when } x<0
\end{aligned}
$$

$f(x)=x^{3}$ is construe up when $x^{>} 0$ and con cred donn when $x<0$.
$f(x)=x^{3}$ is concave up on $(0, \infty)$ and consere down

A function $f(x)$ has an inflection point at x if $f^{\prime \prime}(x)=0$.
Ex: Let $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+4$.
Find the inflection points for $f(x)$.

$$
\begin{aligned}
f^{\prime}(x)= & 12 x^{3}-12 x^{2}-24 x \\
f^{\prime \prime}(x)= & 36 x^{2}-24 x-24=0 \\
& 3 x^{2}-2 x-2=0
\end{aligned}
$$

QR:

$$
\begin{aligned}
x & =\frac{2 \pm \sqrt{(-2)^{2}-4 \cdot 3 \cdot(-2)}}{2 \cdot 3}=\frac{2 \pm \sqrt{4+24}}{6} \\
& =\frac{1}{3} \pm \frac{\sqrt{28}}{6}=\frac{1}{3} \pm \frac{\sqrt{7}}{3}=\frac{1 \pm \sqrt{7}}{3}
\end{aligned}
$$

$$
f^{\prime \prime}(x)=0 \text { when } x=\frac{1 \pm \sqrt{7}}{3} \text {. }
$$

These re the inflection points for $f(x)$.

$$
\begin{aligned}
& f^{\prime \prime}(x)<0 \quad \text { on } \quad\left(\frac{1-\sqrt{7}}{3}, \frac{1+\sqrt{7}}{3}\right) \\
& f^{\prime \prime}(x)>0 \quad \text { on }\left(-\infty, \frac{1-\sqrt{7}}{3}\right) \cup\left(\frac{1+\sqrt{7}}{3}, \infty\right)
\end{aligned}
$$

$$
f(x) \text { is concrue down on }\left(\frac{1-\sqrt{7}}{3}, \frac{1+\sqrt{7}}{3}\right)
$$

$$
\text { and concave op } \quad\left(-\infty, \frac{1-\sqrt{7}}{3}\right)^{3} \cup\left(\frac{1+\sqrt{7}}{3}, \infty\right)
$$

Continuing with this example, where does $f(x)$ have $=$ max or 9 min?

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{3}-12 x^{2}-24 x \\
& =12 x\left(x^{2}-x-2\right) \\
& =12 x(x-2)(x+1)=0
\end{aligned}
$$

when $x=0,1$, or 2
First Deivalive Test

Secund Deriuntive Test:
If $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<0$, then x is a local mix.
If $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)>0$, then x is a local min.

Returning to cur example, we hid 3 numbers where $f^{\prime}(x)=0 \quad x=0,-1,2$.

$$
\begin{aligned}
& f^{\prime \prime}(x)=36 x^{2}-24 x-24 \\
& f^{\prime \prime}(0)=36 \cdot 0^{2}-24 \cdot 0-24=-24<0
\end{aligned}
$$

By the $2^{\text {nd }}$ deri-ati-e test $x=0$ is a local mix.

$$
f^{\prime \prime}(-1)=36 \cdot(-1)^{2}-24(-1)-24=36>0
$$

By the $2^{\text {ad }}$ deri-ative test, $x=-1$ is a local min.

$$
f^{\prime \prime}(2)=36 \cdot 2^{2}-24 \cdot 2-24=144-48-24>0
$$

By the $2^{\text {nd }}$ derinatice tast, $x=2$ is a local min.
Ex: Consitor $f(x)=x(1-x)^{2 / 3}$.
Find loct gatr imm no rinima and inflection pts.

$$
\begin{aligned}
& f^{\prime}(x)^{\substack{\text { Prouct } \\
\text { 2/2 }}} \times \frac{d}{d x}\left[(1-x)^{2 / 3}\right]+1 \cdot(1-x)^{2 / 3} \\
&=x \cdot \frac{2}{3}(1-x)^{1 / 3} \cdot(-1)+(1-x)^{2 / 3} \\
&=-\frac{2}{3} x(1-x)^{-1 / 3}+(1-x)^{2 / 3} \\
&=\frac{-2 x}{3(1-x)^{1 / 3}}+(1-x)^{2 / 3} \\
&=\frac{-2 x}{3(1-x)^{1 / 3}}+\frac{3-x}{3(1-x)^{1 / 3}}=3(1-x)^{1 / 3} \\
&=\frac{1-x}{(1-x)^{1 / 3}}=\frac{(1-x)^{2 / 3}}{}
\end{aligned}
$$

Ex: $f(x)=x^{3}-3 x^{2}+4 x+1$.
Find local moxima + minima $n d$ inflection puints.

$$
f^{\prime}(x)=3 x^{2}-6 x+4=0
$$

QI: $x=\frac{6 \pm \sqrt{(-6)^{2}-4 \cdot 3 \cdot 4}}{2 \cdot 3}=\frac{6 \pm \sqrt{36-48}}{6}$
$f^{\prime}(x) \neq 0 \quad$ for any values of x,
so $f(x)$ has NO local maxing or minima.

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x-6=0 \text { when } \quad \\
& x-1=0 \\
& x=1
\end{aligned}
$$

Inflection point at $x=1$.

$$
\begin{aligned}
f^{\prime \prime}(x)=6 x-6 & <0 \quad \text { when } x<1 \\
6 x-6 & >0
\end{aligned}
$$

$f(x)$ is concave down on $(-\infty, 1)$
concave up on $(1,<0)$.
Ex: $f(x)=1-x^{2} . \quad$ Find extrema.
$f^{\prime}(x)=-2 x=0$ when $x=0$.
$f^{\prime \prime}(x)=-2<0$.
By the second durative test, $x=0$ is a loci l

