Exam 3 IN CLASS Monday, April 11 Final Project due on Cannas Monday, April 18 Optimization
Ex: A rectangle has its base on the x-axis and it upper 2 corners on the parabola $y=3-x^{2}$.
what is the largest oren the rectangle om?
(1) Dean a picture + label cuosithing

(2) What ae vet trying to --xinize? what are jiva?
Maximize A Given: $y=3-x^{2}$
(3) Write the function that we wat to optimize as a function in 1 variable.

$$
\begin{aligned}
A & =2 x y=2 x\left(3-x^{2}\right) \quad \begin{array}{l}
y=0 \\
3-x^{2}=0 \\
\end{array} x^{2}=3 x-2 x^{3}
\end{aligned}
$$

(4) Where r e the ind points? x is in the internal
(5) Whore is $\frac{d A}{d x}=0$? Where is $\frac{d A}{d x}$ undefined?

$$
\begin{aligned}
& \frac{d A}{d x}= \frac{d}{d x}\left[6 x-2 x^{3}\right]=6-6 x^{2}=0 \\
& 6=6 x^{2} \\
& 1=x^{2} \\
& \pm 1=x \quad x=-1 \text { is } \quad \text { not in the } \\
& {[0, \sqrt{3}), }
\end{aligned}
$$ so we're left with $x=1$.

(6) At which of there could the max roue?

$$
\begin{aligned}
& A(0)=6 \cdot 0-2 \cdot 0^{3}=0 \\
& A(\sqrt{3})=6 \cdot \sqrt{3}-2 \cdot(\sqrt{3})^{3}=6 \cdot \sqrt{3}-6 \cdot \sqrt{3}=0 \\
& A(1)=6 \cdot 1-2 \cdot 1^{3}=6-2=4
\end{aligned}
$$

The biggest of these 3 vales occurs at $x=1$, so the maxine possible wee is chen

$$
\begin{aligned}
& x=2 . \quad y=3-x^{2}=3-1^{2}=2 \\
& A=2 x y=2 \cdot 1 \cdot 2=4
\end{aligned}
$$

Ex: Find the point on the line $y=4-3 x$ that is closest to the origin.
(1) Dave a picture
(2) What function do we want to innit? What are we give?
Minimize D Given: $y=4-3 x$.
(3) Wite D as a function of a single warble.

Instead of finding where D.btains its min, In going to find where D^{2} obtains its min.

$$
\begin{aligned}
F=D^{2}=x^{2}+(4-3 x)^{2} & =x^{2}+16-24 x+9 x^{2} \\
& =10 x^{2}-24 x+16
\end{aligned}
$$

(4) Where are the endpoints?

In this problem, there we no endpoints! Were not guaranteed that F will h nee a global ain.
(5) Where is $\frac{d F}{d x}=0$? Where is $\frac{d F}{d x}$ indeffreed?

$$
\begin{aligned}
\frac{d F}{d x} & =\frac{d}{d x}\left[10 x^{2}-24 x+16\right] \\
& =20 x-24=4(5 x-6)=0
\end{aligned}
$$

when $5 x-6=0$

$$
\begin{aligned}
& \quad 5 x=6 \quad x=\frac{6}{5} \\
& y=4-3 x=4-\frac{18}{5}=\frac{20}{5}-\frac{18}{5}=\frac{2}{5} \\
& (x, y)=\left(\frac{6}{5}, \frac{2}{5}\right)
\end{aligned}
$$

(6) How do we know that F has a ghoul min at $x=6 / 5$?
First Deiuntiec Test.

$$
\frac{d F}{d x}=4(5 x-6)
$$

If $x>\frac{6}{5}$, then $\frac{d F}{d x}>0$
If $x<\frac{6}{5}$, then $\frac{d f}{d x}<0$.
This mans F is incersi-y when $x>\frac{6}{5}$
F is dederaing when $x<\frac{6}{5}$.

Ex: Suppose that a and b we the side lengths of a right triangle with hypotenuse Scm . Whit is the largest perimeter possible?

Maximize perimeter P.

$$
\begin{aligned}
& P=a+b+5 \\
& a^{2}+b^{2}=5^{2}=25
\end{aligned}
$$

$$
\begin{aligned}
& b^{2}=25-a^{2} \quad b=\sqrt{25-a^{2}} \\
& p=a+\sqrt{25-a^{2}}+5
\end{aligned}
$$

Endpoints: a is in the interval $[0,5]$.

$$
\begin{aligned}
& \frac{d P}{d a}=\frac{d}{d a}\left[a+\sqrt{25-a^{2}}+5\right] \\
&=1+\frac{-2 a}{2 \sqrt{25-a^{2}}}=1-\frac{a}{\sqrt{25-a^{2}}}=0 \\
& 1=\frac{a}{\sqrt{25-a^{2}}} \sqrt{25-a^{2}}=a \\
& 25-a^{2}=a^{2} \\
& 25=2 a^{2} \\
& \frac{25}{2}=a^{2} \\
& \frac{5}{\sqrt{2}}=a=b \cdot \\
& P(0)=0+\sqrt{25-0^{2}}+5=10 \\
& P(5)=5+\sqrt{25-5^{2}}+5=10
\end{aligned}
$$

$$
\begin{aligned}
P\left(\frac{5}{\sqrt{2}}\right) & =\frac{5}{\sqrt{2}}+\sqrt{25-\left(\frac{5}{\sqrt{2}}\right)^{2}}+5 \\
& =\frac{5}{\sqrt{2}}+\frac{5}{\sqrt{2}}+5=\frac{10}{\sqrt{2}}+5>10
\end{aligned}
$$

P obtains its ax when $a=b=\frac{5}{\sqrt{2}}$.

