MA 137 Lecture 3 - Logarithms
First Exam - IN CLASS February ${ }^{2}$ dave.h.jensen@gmail.com
Exponential Functions are gad models for population growth
Ex: $F(x)=$ number of rabbits in a population after $x$ months.

$$
F(x)=2^{x}
$$

Q: How may y rabbits will there be after 5 mont $h_{5}$ ?

$$
F(5)=2^{5}=32
$$

Q: How lung will it be take for the rabbit population to reach loo?
For what value of $x$ is $F(x)=100$ ?
The secund question is ashing for an inverse function

$$
\text { to } F(x)
$$

Ex: Find the inverse of $F(x)=\frac{3 x+2}{x-7}$

$$
\begin{aligned}
& y=\frac{3 x+2}{x-7} \quad \text { Solve for } x \text { in terms of } y \\
& \begin{array}{l}
y x-7 y=3 x+2 \\
y x=3 x+7 y+2 \\
y x-3 x=7 y+2 \\
(y-3) x=7 y+2
\end{array} \\
& \begin{array}{l}
y=\frac{7 y+2}{y-3}
\end{array}
\end{aligned}
$$

The inverse function to $F(x)$ is the function

$$
\frac{7 x+2}{x-3}
$$

The inesse of an exponential function is called a logaithn. Fur a positive number $a, a \neq 1$, the inverse of the exponential function $a^{x}$ is called the logarithm burse a, and denoted $\log _{a}(x)$.
In other words, if $y=a^{x}$, then $\log _{a}(y)=x$.
Ex: $\log _{2}(16)=4 \quad$ because $2^{4}=16$.
Ex: $\log _{10}(1000)=3$ because $10^{3}=1000$.
In general, $\log _{10}(N) \sim$ the number of digits in $N$.
In this class, if I write $\log (x)$, I men $\log _{10}(x)$.
If I write $\ln (x)$, I mean $\log _{e}(x)$, where $e \approx 2.718281828 \ldots$
The reason that mathenaticiars prefer base e requires some calculus to understand. $\ln (x)$ stands for "nate... logarithm " $\dot{y}=2^{x}$
Graph of a Logarithm


Prperties of logs
(1) $\log _{a}(1)=0$

Why? $\quad a^{0}=1 . \quad 0=\log _{a}\left(a^{0}\right)=\log _{a}(1)$
(2)

$$
\begin{aligned}
& \log _{a}(x)+\log _{a}(y)=\log _{a}(x-y) \\
& \text { Why? } a^{\log _{a}(x)+\log _{a}(y)}=\underbrace{a^{\log _{a}(x)}} \cdot a^{\log _{a}(y)}=x \cdot y \\
&=a^{\log _{a}(x \cdot y)} \\
& \text { so } \log _{a}(x)+\log _{a}(y)=\log _{a}(x \cdot y) .
\end{aligned}
$$

(3) $\log _{a}(x)-\log _{a}(y)=\log _{a}\left(\frac{x}{y}\right)$.
wh? $a^{\log _{a}(x)-\log _{a}(y)}=\frac{a^{\log _{a}(x)}}{a^{\log _{a}(y)}}=\frac{x}{y}$

$$
a^{\log _{9}\left(\frac{x}{y}\right)}
$$

So $\log _{a}(x)-\log _{a}(y)^{2 a}=\log _{a}\left(\frac{x}{y}\right)$.
(4)

$$
\begin{aligned}
& \log _{a}\left(x^{n}\right)=n \cdot \log _{a}(x) \\
& \text { why } 2^{n} a^{n \cdot \log _{a}(x)}=\left(a^{\log _{a}(x)}\right)^{n}=x^{n}=a^{\log _{a}\left(x^{n}\right)}
\end{aligned}
$$

$$
\text { So } n \cdot \log _{a}(x)=\log _{a}\left(x^{n}\right) \text {. }
$$

Change of Bre Formiln:
(5) $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.

Why? $a^{x}=\left(e^{\ln (a)}\right)^{x}=e^{\ln (a) \cdot x}$

