Exam 3 Mandy April 11 IN class
What's on the Exam?
Derivatives

- derivatives of trig functions
- derivatives of exponential
- decivatives of logs / logarithmic differentiation

Applications of Derivatives
Graphing

- maxima + minima
- increasing + decreasing
- concavity + inflection points
- Men Value Theorem
- Optimization E
- L'Hôpital's Rule

Optimization
Ex: Of all right triangles with ven 10 , which one has the smallest perimeter?

(2) what are vet trying t. optimize? what ce e we given? Minimise perimeter P. Given: $A=10$.
(3) Write P as a function of a single write.

$$
\begin{aligned}
P & =b+h+\sqrt{h^{2}+b^{2}} \\
10=A & =\frac{1}{2} \cdot b \cdot h \quad 20=b \cdot h \quad \frac{20}{b}=h \\
P & =b+\frac{20}{b}+\sqrt{\left(\frac{20}{b}\right)^{2}+b^{2}} \\
& =b+\frac{20}{b}+\sqrt{\frac{400}{b^{2}}+b^{2}}
\end{aligned}
$$

(4) What are the endpoints?
b is in the interval $(0, \infty)$
P is not guaranteed to have a minimum!
(5) Take the derivative

$$
\begin{aligned}
& \frac{d P}{d b}=\frac{d}{d b}\left[b+\frac{20}{b}+\sqrt{\frac{400}{b^{2}}+b^{2}}\right] \\
& =1-\frac{20}{b^{2}}+\frac{\frac{1}{d b}\left[\frac{400}{b^{2}}+b^{2}\right]}{2 \sqrt{\frac{400}{b^{2}}+b^{2}}} \\
& =1-\frac{20}{b^{2}}+\frac{-\frac{800}{b^{3}}+2 b}{2 \sqrt{\frac{400}{b^{2}}+b^{2}}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-800}{b^{3}}+2 b \\
& 2 \sqrt{\frac{400}{b^{2}}+b^{2}}
\end{aligned}=\frac{20}{b^{2}}-1 .
$$

Solve far b.
Y_{w} will get $b=\sqrt{20}=2 \sqrt{5}$.
(5) How du ve know this is a local min?

Second derientive test

$$
\begin{aligned}
\frac{d^{2} p}{d b^{2}} & =\frac{d}{d b}\left[1-\frac{20}{b^{2}}+\frac{-\frac{800}{b^{3}}+2 b}{2 \sqrt{\frac{400}{b^{2}+b^{2}}}}\right] \\
& =\frac{40}{b^{3}}+\frac{d}{d b}\left[-\frac{-\frac{400}{b^{3}}+b}{\sqrt{\frac{400}{b^{2}}+b^{2}}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{40}{b^{3}}+\frac{\sqrt{\frac{400}{b^{2}}+b^{2}}\left(\frac{1200}{b^{4}}+1\right)+\left(\frac{400}{b^{3}}-b\right)\left[\begin{array}{c}
-\frac{400}{5 b^{0}}+b \\
\sqrt{\frac{00}{b^{2}}+b^{2}}
\end{array}\right)}{\frac{400}{b^{2}}+b^{2}} \\
& p^{\prime \prime}(2 \sqrt{5})=\square>0 .
\end{aligned}
$$

P is concave up, so $b=2 \sqrt{5}$ is a local
Graphing
Ex: Consider $f(x)=2 x^{3}-15 x^{2}+36 x+7$. where se the local maxim/ minima? where is f incrensing/decre-sing? Whore re the inflection points? where is f concave up/conciue down?

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}-30 x+36 \\
& =6\left(x^{2}-5 x+6\right)=6(x-2)(x-3)
\end{aligned}
$$

So $f^{\prime}(x)=0$ when $x=2,3$.

$f^{\prime}(x)>0$ when $x<2$ or $x>3$
$f^{\prime}(x)<0$ when $2<x<3$
$f(x)$ is increasing when $x<2$ or $x \geqslant 3$
$f(x)$ is deceasing then $2<x<3$.
So $x=2$ is a local $m x$.
So $x=3$ is a local min.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[6 x^{2}-30 x+36\right] \\
& =12 x-30=12\left(x-\frac{5}{2}\right)
\end{aligned}
$$

$f^{\prime \prime}(x)=0$ when $x=\frac{5}{2}$.
$x=\frac{5}{2}$ is an inflection point.
$f^{\prime \prime}(x)<0$ when $x<\frac{5}{2}$
$f^{\prime \prime}(x)>0$ whee $x>\frac{5}{2}$.
$f(x)$ is concave down when $x<\frac{5}{2}$ $f(x)$ is concave up when $x>\frac{5}{2}$.

Men Valve Theorem
Let $f(x)$ be a differentiable function on $[a, b]$. Then there is a number c in $[a, b]$ sit.

$$
\begin{aligned}
& \text { there }{ }^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
\end{aligned}
$$

Another Optimization Problem

perimetos of the fuce $=100 y^{d s}$ Maxinize areq

$$
\begin{aligned}
A & =x y \quad x+2 y=100 \\
& =(100-2 y) y=100 y-2 y^{2} \\
\frac{d A}{d y} & =\frac{d}{d y}\left[100 y-2 y^{2}\right]=100-4 y=0
\end{aligned}
$$

$$
100=4 y \quad 25=y . \quad \begin{aligned}
x & =100-2 y \\
& =100-2.25 \\
& =50 .
\end{aligned}
$$

To see that this is a local $m x /$ let'r $-e$ the $2^{\text {nd }}$ derivative test.

$$
\frac{d^{2} A}{d y^{2}}=\frac{d}{d y}[100-4 y]=-4<0
$$

A is always concave down.
So $y=25$ is a local max.

