Final Project due Monday April 18 on Canvas

Antiderivatives
Ex: Let $f(x)=x^{2}+3$.
Find a function whose derivative is $f(x)$.

$$
g(x)=\frac{1}{3} x^{3}+3 x
$$

Let's check that $g^{\prime}(x)=f(x)$.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left[\frac{1}{3} x^{3}+3 x\right] \\
& =\frac{1}{3} \cdot 3 x^{2}+3=x^{2}+3
\end{aligned}
$$

Def: An antiderivative of a function $f(x)$ is a function whose derivation is $f(x)$.
Note: A faction cm have mace than 1 antiderivative!
Ex: $f(x)=x^{2}+3$.
$\frac{1}{3} x^{3}+3 x$ is an antideriantive of $f(x)$
$\frac{1}{3} x^{3}+3 x+7$ is also an antideriostive of $f(x)$!
$\frac{1}{3} x^{3}+3 x+5$ are a tho andideriontires of $f(x)$. $\frac{1}{3} x^{3}+3 x+\pi$
Ex: Find all antideriantives of the constant function $f(x)=0$.
Let $g(x)$ be n antiderivatioc of $f(x)=0$. Let's show that $g(x)$ is a constant function. Choose numbers a and b. We wat to show that $g(a)=g(b)$.
By the MVT, there is a number c between a and b such that

$$
\begin{aligned}
& 0=f(c)=g^{\prime}(c)=\frac{g(b)-g(a)}{b-a} \\
& 0=g(b)-g(a) \\
& g(a)=g(b) \text {. We'ie done! }
\end{aligned}
$$

Every antidecivative of $f(x)=0$ is a consort function.

Now, let's see that for ny function $f(x)$, may two antideriontizes of $f(x)$ differ by a constant.
Why? Let $g_{1}(x), g_{2}(x)$ be antiderientives of $f(x)$.
This neon) $g_{1}^{\prime}(x)=f(x) \quad g_{2}^{\prime}(x)=f(x)$.

$$
\begin{aligned}
\frac{d}{d x}\left[g_{1}(x)-g_{2}(x)\right] & =g_{1}^{\prime}(x)-g_{2}^{\prime}(x) \\
& =f(x)-f(x)=0
\end{aligned}
$$

So $g_{1}(x)-g_{2}(x)$ is a cuastent c.

$$
\begin{aligned}
& g_{1}(x)-g_{2}(x)=C \\
& g_{1}(x)=g_{2}(x)+C
\end{aligned}
$$

Ex: Find all functions whose derivative is

$$
f(x)=x^{2}+3
$$

We akendy found one function whose drastic is $f(x)$.
Namely, $g(x)=\frac{1}{3} x^{3}+3 x$
All antiderivatives of $f(x)$ re of the form:

$$
\frac{1}{3} x^{3}+3 x+c
$$

Table of Antiderinatives:

Ex: Let $f(x)=3 e^{x}+\cos (x)-7 x^{5}+3 x$.
Find ALL antideriontives of $f(x)$.

$$
\begin{aligned}
& 3 e^{x}+\sin (x)-7 \cdot \frac{1}{6} x^{6}+3 \cdot \frac{1}{2} x^{2}+c \\
& 3 e^{x}+\sin (x)-\frac{7}{6} x^{6}+\frac{3}{2} x^{2}+c
\end{aligned}
$$

Let's check our answer.

$$
\begin{aligned}
& \frac{d}{d x}\left[3 e^{x}+\sin (x)-\frac{7}{6} x^{6}+\frac{3}{2} x^{2}+c\right] \\
& =3 e^{x}+\cos (x)-\frac{7}{6} \cdot 6 x^{5}+\frac{3}{2} \cdot 2 x \\
& =3 e^{x}+\cos (x)-7 x^{5}+3 x=f(x)
\end{aligned}
$$

Ex: Let $f(x)=7 \sec ^{2}(x)+\frac{13}{x}-x^{4}$. Find all antidciratives of $f(x)$.

$$
7 \tan (x)+13 \cdot \ln (x)-\frac{1}{5} x^{5}+C
$$

Let's chad that one answer is correct

$$
\begin{aligned}
& \frac{d}{d x}\left[7 \tan (x)+13 \ln (x)-\frac{1}{5} x^{5}+c\right] \\
& 27 \sec ^{2}(x)+13 \cdot \frac{1}{x}-\frac{1}{8} \cdot 5 x^{4}=f(x)
\end{aligned}
$$

If you wanted to find an antiderinatioc of.$x \cdot \sin (x)$ you need more tools.
or $\ln (x)$
oc $\sec (x)$

