Final Exam Wednesday, May y 10:30 AM-12:30 PM here (Chem-Phys 139)
It will be cumulative - that is, it will cover material from the entire semester

Area Problem
Ex: Compute the ea under the parabola $y=x^{2}$ between $x=0$ and $x=1$.

Area of the 4 pink rectangles

$$
\begin{aligned}
& =\frac{1}{4} \cdot\left(\frac{1}{4}\right)^{2}+\frac{1}{4} \cdot\left(\frac{2}{4}\right)^{2}+\frac{1}{4} \cdot\left(\frac{3}{4}\right)^{2}+\frac{1}{4}\left(\frac{4}{4}\right)^{2} \\
& =\frac{1}{4} \cdot\left[\left(\frac{1}{4}\right)^{2}+\left(\frac{2}{4}\right)^{2}+\left(\frac{3}{4}\right)^{2}+\left(\frac{4}{4}\right)^{2}\right] \\
& =\frac{1}{4} 3 \cdot\left[1^{2}+2^{2}+3^{2}+4^{2}\right]
\end{aligned}
$$

$$
=\frac{1+4+9+16}{64}=\frac{30}{64} \approx 0.47
$$

Recall: the green area is smaller then this! What if re vent a number that is smaller than the gen are?

Area of the 4 blue rectangles

$$
\begin{aligned}
& =\frac{1}{4} \cdot 0+\frac{1}{4} \cdot\left(\frac{1}{4}\right)^{2}+\frac{1}{4} \cdot\left(\frac{2}{4}\right)^{2}+\frac{1}{4} \cdot\left(\frac{3}{4}\right)^{2} \\
& =\frac{1}{4}\left[\left(\frac{0}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{2}{4}\right)^{2}+\left(\frac{3}{4}\right)^{2}\right] \\
& =\frac{1}{4^{3}}\left[0^{2}+1^{2}+2^{2}+3^{2}\right] \\
& =\frac{0+1+4+9}{64}=\frac{14}{64} \approx 0.22
\end{aligned}
$$

$0.22 \leqslant$ Geen $A_{\text {ceq }} \leq 0.47$
What it ve went a better approximation for the yreen area?
Iden: More Rectingles!

Aren of the 8 pople rectargles:

$$
\begin{aligned}
&= \frac{1}{8} \cdot\left(\frac{1}{8}\right)^{2}+\frac{1}{8}\left(\frac{2}{8}\right)^{2}+\frac{1}{8}\left(\frac{3}{8}\right)^{2}+\frac{1}{8}\left(\frac{4}{8}\right)^{2}+\frac{1}{8}\left(\frac{5}{8}\right)^{2} \\
& \quad+\frac{1}{8}\left(\frac{6}{8}\right)^{2}+\frac{1}{8}\left(\frac{7}{8}\right)^{2}+\frac{1}{8}\left(\frac{8}{8}\right)^{2} \\
&=\frac{1}{8^{3}} \cdot\left[1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2}+8^{2}\right] \\
&= \frac{1}{512}[1+4+9+16+25+36+49+64]
\end{aligned}
$$

$$
=\frac{204}{512} \times 0.39
$$

Area of these 8 blue rectangles

$$
\begin{aligned}
& =\frac{1}{8^{3}}\left[0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2}\right] \\
& =\frac{140}{512} \approx 0.27 \\
& \quad 0.27 \leq \text { Green Ares } \leq 0.39
\end{aligned}
$$

If we want an even better approximation, take even nose rectangles.
What if we have n rectangles?

Area of the n rectangles

$$
\begin{aligned}
& =\frac{1}{n}\left[\left(\frac{1}{n}\right)^{2}+\left(\frac{2}{n}\right)^{2}+\left(\frac{3}{n}\right)^{2}+\cdots+\left(\frac{n}{n}\right)^{2}\right] \\
& =\frac{1}{n^{3}}\left[1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right] \\
& \left(1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}\right. \\
& =\frac{n(n+1)(2 n+1)}{6 n^{3}}
\end{aligned}
$$

To get the best possible approximation, tate the limit as the number of rectangles goes to \mathbb{A} $\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}}=\frac{2}{6}=\frac{1}{3}$.

If you do the sa thing with left-jostitied rectangles instead, the ven of the a rectangles is

$$
\begin{aligned}
& \frac{1}{n}\left[\left(\frac{0}{n}\right)^{2}+\left(\frac{1}{n}\right)^{2}+\left(\frac{2}{n}\right)^{2}+\cdots+\left(\frac{n-1}{n}\right)^{2}\right] \\
&= \frac{1}{n^{3}}\left[0^{2}+1^{2}+2^{2}+\cdots(n-1)^{2}\right] \\
&= \frac{(n-1) \cdot n \cdot(2 n-1)}{6 n^{3}} \\
& \lim _{n \rightarrow \infty} \frac{(n-1) n(2 n-1)}{6 n^{3}}=\frac{2}{6}=\frac{1}{3} . \\
& \frac{1}{3} \leq \text { Green Area } \leq \frac{1}{3} \\
& 11 \\
& 1 / 3
\end{aligned}
$$

