Final Projects are graded
Canvas deleted all my comments, so if you have questions about your grade, please ask
Final Exam Wednesday May y 10:30 AM-12:30 Final Final will be curse ganges willitiee submitted to the registrar by the end of the day un Wednesday, May $4^{\text {th }}$.
\rightarrow If you miss the final or have any other wotstorting coursework, you need to contact me un of before May 4
I will be dropping the 3 lowest quiz grades
Computing Areas

Today: compute the are e under the graph $y=f(x)$ between $x=a$ and $x=b$.

Draw a bunch of rectangles with base on the x-axis and upper right conner on the graph
\# of rectangles $=n$
width of each rectangle $=\Delta x=\frac{b-a}{n}$
Area of the rectangles

$$
\begin{aligned}
= & f(a+\Delta x) \cdot \Delta x+f(a+2 \Delta x) \cdot \Delta x+f(a+3 \Delta x) \cdot \Delta x \\
& +\cdots+f(a+n \cdot \Delta x) \cdot \Delta x \\
= & {[f(a+\Delta x)+f(a+2 \Delta x)+f(a+3 \Delta x)+\cdots+f(a+n \Delta x)] \cdot \Delta x }
\end{aligned}
$$

Digression About Summation Notation

$$
\text { Ex: } \begin{aligned}
\sum_{i=1}^{6} i^{2} & =1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2} \underbrace{\text { fins it topple plop }} \\
& =1+4+9+16+25+36 \\
& =91
\end{aligned}
$$

Ex: $\sum_{i=3}^{5}\left(i^{3}-i\right)=\left(3^{3}-3\right)+\left(4^{3}-4\right)+\left(5^{3}-5\right)$

$$
=(27-3)+(64-4)+(125-5)
$$

$$
=24+60+120=204
$$

$$
\begin{aligned}
& =[f(a+\Delta x)+f(a+2 \Delta x)+f(a+3 \Delta x)+\cdots+f(a+n \Delta x)] \cdot \Delta x \\
& =\sum_{i=1}^{n} f(a+i \Delta x) \cdot \Delta x \leftarrow \text { rena of the } n
\end{aligned}
$$

To compute the actual wen, tate the limit as the \# of rectangles goes to infinity

$$
\int_{a}^{b} f(x) d x:=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} f(a+i \Delta x) \Delta x}{}
$$

$\int_{a}^{b} f(x) d x$ is called the definite integral of $f(x)$ from a to b.
What does the definite integral compute? $\int_{a}^{b} f(x) d x$ is the signed area under the graph $y=f(x)$ between $x=a$ and $x=b$.

2 currents:
(1) whit if the graph dips below the x-axis?

The "height" of this rectrigle is $f(a+i \Delta x)<0$
(2) What if b ba?

The rectangles have "width" $\Delta x=\frac{b-a}{n}<0$
Rect...gles on have negation "height" it $f(x)<0$ conheenegatice "width" if $b<a$
 the x-axis]
Ex: Compute $\int_{-1}^{2} 2 x d x$.

$$
\begin{aligned}
& \begin{aligned}
& \int_{-1}^{2} 2 x d x=4-1 \\
&=
\end{aligned} \\
& 2 \\
& \text { triangle with } \\
& \text { bare } 1 \text { ind }(-1,-2 \\
& \text { height } 2 \\
& \text { wen }=\frac{1}{2} \cdot 1 \cdot 2=1
\end{aligned}
$$

