Final exam Wednesday, May 4 10:30 AM -12:30 PM here
If youke going to miss the final or have any ot her outstanding coursework, you need to email me on or before May $4^{\text {th }}$ at dave.h.jensen @gmail.con I will be dipping the 3 lowest quiz grades Course evaluations are now open
Definite Integral
Def: Let $f(x)$ be a function, a and b numbers, and define $\Delta x=\frac{b-a}{n}$.
The definite integral of $f(x)$ from a to b is
number of rectangles gets
larger and lager
What dues it really mean?
$\int_{a}^{b} f(x) d x$ is the signed area under the graph $y=f(x)$ between $x=a$ and $x=b$.

Ex: $\int_{0}^{t} 7 d x=$ urea of the purple rect-rgle

$$
\int_{0}^{t} 7 d x=7 \cdot t
$$

$\int_{0}^{t} c d x=$ area of the green rectangle $=c t$.

$$
\int_{0}^{t} x d x=\frac{1}{2} \cdot t \cdot t=\frac{1}{2} t^{2}
$$

Properties of the Definite Integral

1) $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
 why?
by propoty (1)

$$
\begin{aligned}
& \begin{aligned}
\int_{a}^{a} f(x) d x & +\int_{a}^{b} f(x) d x \\
& =\int_{a}^{b} f(x) d x
\end{aligned} \\
& \begin{aligned}
\int_{a}^{a} f(x) d x & =0
\end{aligned}
\end{aligned}
$$

3) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$

Why?
by proporty (1),

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x+\int_{b}^{a} f(x) d x=\int_{a}^{a} f(x) d x=0 \\
& \int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
\end{aligned}
$$

4) $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} y(x) d x$
5) If c is a cunstant, then

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

Ex: Cumpute $\int_{2}^{6} x d x$

$$
\begin{aligned}
& \int_{0}^{2} x d x+\int_{2}^{6} x d x=\underbrace{\int_{0}^{6} x d x}_{0} \\
& \frac{1}{2} \cdot 2^{2}+\int_{2}^{6} x d x=\frac{1}{2} \cdot 6^{2} \\
& 2+\int_{2}^{6} x d x=18
\end{aligned}
$$

$$
\int_{2}^{6} x d x=18-2=16
$$

Ex: Conpute $\int_{a}^{b} x d x$.

$$
\begin{aligned}
& \int_{0}^{a} x d x+\int_{a}^{b} x d x=\underbrace{\int_{0}^{b} x d x} \\
& \frac{1}{2} \cdot a^{2}+\int_{a}^{b} x d x=\frac{1}{2} b^{2} \\
& \int_{a}^{b} x d x=\frac{1}{2} b^{2}-\frac{1}{2} a^{2} \text {. } \\
& \text { Ex: } \int_{0}^{6}(5 x-4) d x \\
& =\int_{0}^{6} 5 x d x+\int_{0}^{6}(-4) d x \quad \begin{array}{c}
\text { sum cule } \\
(\text { peporty } \\
41)
\end{array} \\
& =5 \int_{0}^{6} x d x-\int_{0}^{6} 4 d x \quad \begin{array}{c}
\text { coastatent multiple } \\
\text { rule (proporty }(5))
\end{array} \\
& =5 \cdot \frac{1}{2} \cdot 6^{2}-4 \cdot 6 \\
& =90-24=66
\end{aligned}
$$

Ex: $\int_{0}^{t} x^{2} d x$. We dan tet know how to do this with out using the formal definition of the definite integral!

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f(a+i \Delta x) \Delta x
$$

whore $\Delta x=\frac{b-a}{h}$.

$$
\begin{aligned}
& \Delta x=\frac{t-0}{n}=\frac{t}{n} \quad \begin{array}{c}
a=0 \\
b=t
\end{array} \\
& \begin{aligned}
f(x)=x^{2}
\end{aligned} \\
& \int_{0}^{t} x^{2} d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(i \frac{t}{n}\right)^{2} \cdot \frac{t}{n} \\
&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{t^{3}}{n^{3}} i^{2} \\
&=\lim _{n \rightarrow \infty} \frac{t^{3}}{n^{3}} \sum_{i=1}^{n} i^{2} \\
&=\lim _{n \rightarrow \infty} \frac{t^{3}}{n^{3}} \frac{n(n+1)(2 n+1)}{6} \\
&=\lim _{n \rightarrow \infty} \frac{t^{3} n(n+1)(2 n+1)}{6 n^{3}}=\frac{2 t^{3}}{6}=\frac{1}{3} t^{3}
\end{aligned}
$$

Recap:

$$
\begin{aligned}
& \int_{0}^{t} 1 d x=t \\
& \int_{0}^{t} x d x=\frac{1}{2} t^{2} \\
& \int_{0}^{t} x^{2} d x=\frac{1}{3} t^{3}
\end{aligned}
$$

