Final Exam on Wednesday, May $9^{\text {th }}$ 10:30 AM -12:30 PM here (Chem-Phys 139) 9 multiple choice
here (Chem-Phys 139) 3 sheet answers
Course Evaluations re now Open!
The Fundamental Theorem of Calculus
Last time:

$$
\begin{array}{l|l}
\int_{0}^{x} c d t=c \cdot x & \frac{d}{d x}[c \cdot x]=c \\
\int_{0}^{x} t \cdot d t=\frac{1}{2} x^{2} & \frac{d}{d x}\left[\frac{1}{2} x^{2}\right]=x \\
\int_{0}^{x} t^{2} d t=\frac{1}{3} x^{3} & \frac{d}{d x}\left[\frac{1}{3} x^{3}\right]=x^{2}
\end{array}
$$

Let $f(x)$ be a continuous function.
Consider the function $G(x)=\int_{a}^{x} f(t) d t$


FTOC, Part 1: Let $f(x)$ be a continuous fandito, and let $G(x)=\int_{a}^{x} f(t) d t$.
Then $G(x)$ is an antiderinative of $f(x)$.
In other words, $G^{\prime}(x)=f(x)$.
why is this tree?

$$
\begin{aligned}
G^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{G(x+h)-G(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\int_{a}^{x+h} f(t) d t-\int_{h}^{x} f(t) d t}{h} \\
& =\lim _{h \rightarrow 0} \frac{\int_{x}^{x+h} f(t) d t}{h} \\
& \approx \lim _{h \rightarrow 0} \frac{[\text { ween of - rectangle } u / \text { width } h]}{h} f(x) \\
& =\lim _{h \rightarrow 0} \frac{h f(x)}{h}=\lim _{h \rightarrow 0} f(x)=f(x)
\end{aligned}
$$

Therefore, $G(x)$ is an antideniontive of $f(x)$.

FTOC, Put 2: Let $f(x)$ be a continuous function, and let $H(x)$ be any antidecinative of $f(x)$.
Then $\int_{a}^{b} f(x) d x=H(b)-H(a)$.
Why is this tore?
By FTOC, port 1, ae sew $G(x)$ is an antiderivitive of $f(x)$.
So $G(x)$ and $H(x)$ differ by a constant.
In other wards, $H(x)=G(x)+C$.

$$
\begin{aligned}
& H(b)-H(a)=[G(b)+C]-[G(a)+c]_{0}^{b} \\
& =G(b)-G(a)=\int_{a}^{b} f(t) d t-\int_{a}^{a} f(P) d t \\
& \quad=\int_{a}^{b} f(t) d t \\
& \text { Ex: } \int_{0}^{1} x^{2} d x \\
& H(x)=\frac{1}{3} x^{3} \text { is on antideiontive of } x^{?} . \\
& \int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1} \\
& =\frac{1}{3} \cdot 1^{3}-\frac{1}{3} \cdot 0^{3} \\
&
\end{aligned}
$$

Ex: Coupote $\quad \int_{2}^{5}\left[3 x^{3}-5 x^{2}+4\right] d x$
I need an antiderivative of $3 x^{3}-5 x^{2}+4$.

$$
\begin{aligned}
& \int_{2}^{5}\left[3 x^{3}-5 x^{2}+4\right] d x=3 \int_{2}^{5} x^{3} d x-5 \int_{2}^{5} x^{2} d x+\int_{2}^{5} 4 x x \\
& =\left.\left[3 \cdot \frac{1}{4} x^{4}-5 \cdot \frac{1}{3} x^{3}+4 x\right]\right|_{2} ^{5} \\
& =\left[\frac{3}{4} \cdot 5^{4}-\frac{5}{3} \cdot 5^{3}+4 \cdot 5\right]-\left[\frac{3}{4} \cdot 2^{4}-\frac{5}{3} \cdot 2^{3}+4 \cdot 2\right]
\end{aligned}
$$

Ex: $\int_{0}^{\pi} \sin (x) d x \quad$ An antiderintive of $\sin (x)$


$$
=-(-1)-(-1)=1+1=2
$$



$$
\begin{aligned}
\int_{1}^{e} \frac{1}{x} d x=\left.\ln |x|\right|_{1} ^{e} & =\ln (e)-\ln (1) \\
& =1-0=1
\end{aligned}
$$

