Course evaluations now open
\rightarrow They close on Sunday, May $1^{\text {st }}$ at midnight Final Exam on Wednesday, May y $^{\text {th }}$ 10:30-12:30 M here in Chen -Phys 139
Exam is cumulative (roughly one-third will be on material covered since Exam 3)
9 multiple choice questions $\leftarrow 60$ points 3 short answer questions $\leftarrow 40$ points What's in the Exam?

Intro
Basic function, graphs, seni-ly and duble-log plots
Sequences
Definition, limits, excursively defined sequaces, fixed points
Limits
Definition, peopaties, continuous fraction, IUT, Samwieb Ream
Derivatives related sates
Definition, propotior, som ede, pedodect -le, guotiont role, chive
Applications of Derivatives ios
Max/min, incensing/deressing, concurity, MUT, optimization, limits ot reaxivively defined sequaces

Integrals
Antidecivatiocs, Riemann sums, definition of the definite intel Paprotica of the definite integral, FTOC

Related Rates
Ex: A 10 ft ladder lems against a wall.
If the top is falling at conte of $2 \mathrm{ft} / \mathrm{s}$, haw fort is the bottom moving away from the will when the top is 8 ft from the floor?
(1) Dean a picture

(2) What are rue given? what are eve tiyingto firs?
Give: $\frac{d y}{d t}=-2 \mathrm{ft} / \mathrm{s}$
Want to find: $\frac{d x}{d t}$ when $y=8 \mathrm{ft}$.
(3) Write an equation expressing the relationship between your vainbles

$$
\begin{aligned}
& x^{2}+y^{2}=10^{2} \\
& x^{2}+y^{2}=100
\end{aligned}
$$

(9) Take the deivalive of hal sides

$$
\begin{aligned}
& \frac{d}{d t}\left[x^{2}+y^{2}\right]=\frac{d}{d t}[100] \\
& 2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}=0
\end{aligned}
$$

(5) Plog in

$$
\begin{aligned}
& 2 x \frac{d x}{d t}+2(8) \cdot(-2)=0 \\
& 2 x \frac{d x}{d t}=2 \cdot 2 \cdot 8 \quad \frac{d x}{d t}=\frac{2 \cdot 8}{x}=\frac{16}{x} \\
& y=8 \quad x^{2}+y^{2}=10^{2} \\
& x^{2}+8^{2}=10^{2} \\
& x^{2}=10^{2}-8^{2}=100-64=36 \\
& x=6
\end{aligned}
$$

FTOC
Ex: Find $\frac{d}{d x}\left[\int_{3}^{x^{3}} \sec (t) d t\right]$

$$
G(x)=\int_{3}^{x} \sec (t) d t
$$

FTOC, part 1: $G^{\prime}(x)=\sec (x)$

$$
\begin{aligned}
& \int_{3}^{x^{3}} \sec (t) d t=G\left(x^{3}\right) \\
& \begin{aligned}
\frac{d}{d x}\left[G\left(x^{3}\right)\right] & \stackrel{\substack{\text { chic } \\
\sim \\
\sim}}{=} G^{\prime}\left(x^{3}\right) \cdot \frac{d}{d x}\left[x^{3}\right] \\
& =\sec \left(x^{3}\right) \cdot 3 x^{2}
\end{aligned}
\end{aligned}
$$

Ex: $\int_{\pi / 6}^{\pi / 4} \sec (x) \tan (x) d x$
$\sec (x)$ is an antidecrivative of $\sec (x) \tan (x)$ By FTOC, pret 2

$$
\begin{aligned}
& \int_{\pi / 6}^{\pi / 6} \sec (x) \tan (x) d x=\left.\sec (x)\right|_{\pi / 6} ^{\pi / 4} \\
& =\sec (\pi / 4)-\sec (\pi / 6)=\frac{1}{\cos (\pi / 4)}-\frac{1}{\cos (\pi / 6)} \\
& =\frac{1}{\frac{\sqrt{2}}{2}}-\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}} \\
& =\frac{2 \sqrt{3}}{\sqrt{6}}-\frac{2 \sqrt{2}}{\sqrt{6}}=\frac{2(\sqrt{3}-\sqrt{2})}{\sqrt{6}}
\end{aligned}
$$

Sandwich Reorem
Ex: Compute $\lim _{x \rightarrow 0} x^{2} \cdot \sin \left(\frac{1}{x}\right)$

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

since $x^{2} \geq 0$ for all x

$$
\begin{aligned}
& -x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2} \\
& \lim _{x \rightarrow 0}-x^{2} \leq \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right) \leq \lim _{x \rightarrow 0} x^{2} \\
& 11 \begin{array}{l}
11 \\
-0^{2} \\
0
\end{array} \\
& \int_{\text {becurse }}^{11} 0^{2}=0 \\
& \text { continuous function } \\
& 0 \leq \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right) \leq 0
\end{aligned}
$$

Optimization
Ex: Among all rectangles with area 1, find the one with the smallest perimeter.
(1) Daw - picture
(2) What function re you
 trying to optinize?
We wat to minimize the perimeter P.
(3) Write this function is a function of a $\frac{\text { single }}{\text { vriblle. }}$

$$
P=2 x+2 y \quad x y=1 \quad y=1 / x
$$

$$
P=2 x+\frac{2}{x}
$$

(4) Take the teinative

$$
\begin{array}{r}
\frac{d P}{d x}=\frac{d}{d x}\left[2 x+\frac{2}{x}\right]=2-\frac{2}{x^{2}}=0 \\
2=\frac{2}{x^{2}} \quad 1=\frac{1}{x^{2}} \quad x^{2}=1 \\
y=\frac{1}{x}=\frac{1}{1}=1 \quad \xrightarrow{x}=1 \\
y=1
\end{array}
$$

(5) Check that this is actually a min.

I'm going to wee the second Derivative test.

$$
\begin{aligned}
& \frac{d^{2} p}{\partial x^{2}}=\frac{d}{d x}\left[2-\frac{2}{x^{2}}\right] \\
&=0-2 \cdot \frac{d}{d x}\left[x^{-2}\right] \\
&=-2 \cdot(-2) \cdot x^{-3}=\frac{4}{x^{3}} . \\
& \frac{4}{x^{3}}>0 \quad \text { if } x>0 .
\end{aligned}
$$

So the $2^{\text {nd }}$ derivative is always position. So P is always concave up.

So $x=1$ is = load min ty the $2^{\text {nd }}$ derivalia tot.

