Exam 1- Wednesday, February $2^{\text {nd }}$ IN CLASS
Please get your DRC letters to me by the end of the week
Log Plots (or Semilog Plots)

If a function looks linear when graphed on a \log plot, what kind of function is it?

$$
\begin{gathered}
Y=m x+b \\
\log (y)=m x+b \\
y=10^{m x+b} \\
y=10^{b} \cdot 10^{m x} \\
=10^{b} \cdot\left(10^{m}\right)^{x} .
\end{gathered}
$$

$$
\begin{aligned}
y=a \cdot c^{x}, \text { where } & a=10^{b} \\
\text { and } & =10^{m} .
\end{aligned}
$$

Going backwards, if $y=\underline{a} \cdot c^{x}$ is an exponential function, then the graph of this function on a log plot will be a line with y-interest $b=\log (a)$ and slope $m=\log (c)$.
Ex: If you graph the function $y=5 \cdot 2^{x}$ on a semilog prot, you get a line with
y-intercept $\log (5)$ and slope $\log (2)$.
Ex: Let $y=a \cdot c^{x}$ be an exponential function.
Suppose, when you graph this function on a log plot, you get a line with $y^{\text {-interest } 5}$ and slope 7. What is the function?

$$
\begin{aligned}
& a=10^{5}=100,000 \\
& c=10^{7}=10,000,000 \\
& y=10^{5} \cdot\left(10^{7}\right)^{x}
\end{aligned}
$$

Double -Log Plots (or Log-Log Plots)

$$
\xrightarrow{\begin{array}{l}
T=\log (y) \\
\begin{array}{l}
\text { Suppose a function } \\
y=f(x) \text { is a line } \\
\text { when plotted on a } \\
\text { double log plot. }
\end{array} \\
X
\end{array}=\log (x) \begin{array}{l}
\text { What bind of } \\
\text { function in it? }
\end{array}} \begin{aligned}
Y & =m X+b \\
\log (y) & =m \cdot \log (x)+b
\end{aligned}
$$

$$
\begin{aligned}
& 10^{\log (y)}=10^{m \cdot \log (x)+b} \\
& y=10^{b} \cdot 10^{m \cdot \log (x)} \\
& y=10^{b} \cdot 10^{\log \left(x^{m}\right)} \\
& y=10^{b} \cdot x^{m}
\end{aligned}
$$

This is a pour function.

$$
\begin{array}{rlrl}
y=a \cdot x^{m}, & \text { where } & =10^{b} \\
& \text { and } & m & =m .
\end{array}
$$

Going backwards: If you have a power function $y=a \cdot x^{\tilde{m}}$, then when you plot it on a double \log plot, you get a line with y-intercept $b=\log (a)$ and slope \underline{m}.
Ex: If you plot $y=100 \cdot x^{3}=$ on a duple log plot, you get a line with y-intercept $\log (100)=2$ and slope 3 .
Ex: If the genl of the function $y=f(x)$ on a double log plat is a line with y-intercept 1 and slope 5, what is $f(x)$?

It's a pouer fuaction $f(x)=a \cdot x^{m}$, where $a=10^{1}=10$ and $m=5$.

$$
f(x)=10 x^{5}
$$

