First exam IN CLASS February $2^{\text {nd }}$ Please send me your DRC letters
Exponential Growth
Ex: Population of skunks.
Start with 2 skunks at time $t=1$. Population doubles every month.

Time (months)	1	2	3	4	5	6	\ldots
Population	2	4	8	16	32	64	\leftarrow

$N(t)=$ skunk population at time t.

$$
N(t)=2^{t}, \quad t=1,2,3,4, \ldots
$$

Disucte
$N(t)$ is whit we call a sequence.
A sequence is a function that assigns a number to every nonnegative whole number.

$$
N_{0}, N_{1}, N_{2}, N_{3}, \ldots
$$

Ex:

Ex: Starting population at time $t=0$ is 100 Population doubles every month.

t	0	1	2	3	4	5	\ldots
N_{t}	100	200	400	800	1600	3200	\ldots

$$
N_{t}=100 \cdot 2^{t}
$$

Ex: Starting population at time $t=0$ is 100 skunks. Population triples every month.

t	0	1	2	3	4	\cdots
N_{t}	100	300	900	2700	8100	\ldots

$$
N_{t}=100 \cdot 3^{t}
$$

In general, if the starting population is N_{0} and the population increases by a factor of R each month, then...

t	0	1	2	3	4	\cdots
N_{t}	N_{0}	$N_{0} \cdot R$	$N_{0} \cdot R^{2}$	$N_{0} \cdot R^{3}$	$N_{0} \cdot R^{4}$	\cdots

$$
N_{t}=N_{0} \cdot R^{t} \cdot \int \text { Exponential Growth }
$$

Exponential Decay
If $0<R<1$, then $N_{t}=N_{0} \cdot R^{t}$ is, decreasing sequence. In this case, we refer to it as exponential decay.
Ex: If $N_{0}=1, R=\frac{1}{2}$.

t	0	1	2	3	4	\cdots
N_{t}	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	\cdots

$$
N_{t}=2 \cdot\left(\frac{1}{2}\right)^{t}=\frac{1}{2^{t}}
$$

Recursively Defined Sequences
A recursively defined sequere is an expression for N_{t+1} in terms of N_{t}.
Ex: $N_{t+1}=2 \cdot N_{t} \cdot z \leftarrow$ every time the rant incroes by 1,

$$
\begin{array}{l|l}
N_{0}=1 \cdot & N_{0}=100 \\
N_{1}=2 \cdot N_{0}=2 \cdot 1=2 & N_{1}=2 \cdot N_{0}=2 \cdot 100=200 \\
N_{2}=2 \cdot N_{1}=2 \cdot 2=4 & N_{2}=2 \cdot N_{1}=2 \cdot 200=400 \\
N_{3}=2 \cdot N_{2}=2 \cdot 4=8 & N_{3}=2 \cdot N_{2}=2 \cdot 400=800
\end{array}
$$

Ex: $N_{t+1}=3 \cdot N_{t} \leftarrow$ every term in the sequace is 3 times the previous term.

$$
\begin{aligned}
& N_{1}=100 \\
& N_{1}=3 \cdot N_{0}=3 \cdot 100=300 \\
& N_{2}=3 \cdot N_{1}=3 \cdot 300=900 \\
& N_{3}=3 \cdot N_{2}=3 \cdot 900=2700 .
\end{aligned}
$$

In general, consider the recursion
$N_{t+1}=N_{t} \cdot R \quad e$ each term in the sequare is R times the previous term.

$$
\begin{aligned}
& N_{0}=N_{0} \cdot \\
& N_{1}=N_{0} \cdot R \\
& N_{2}=N_{1} \cdot R=\left(N_{0} \cdot R\right) \cdot R=N_{0} \cdot R^{2} \\
& N_{3}=N_{2} \cdot R=\left(N_{0} \cdot R^{2}\right) \cdot R=N_{0} \cdot R^{3} \\
& N_{4}=N_{3} \cdot R=\left(N_{0} \cdot R^{3}\right) \cdot R=N_{0} \cdot R^{4}
\end{aligned}
$$

The sequence is $\quad N_{t}=N_{0} \cdot R^{t}$.

