Exam 1 Wednesday IN CLASS
If you're sick STAY HOME, email me at dave.h.jensen @gnail.con (do NOT use Canvas)
$\frac{\text { Exam Format }}{50 \text { minutes }}$
6 multiple choice
2 short answers - SHOW YOUR WORK
Calculators OK
What's on the Exam?

- Elementary Functions
- liner frs, quadratic for, composition ad incuses, graphing
- Exponentials
-definition, properties, y eph
- Lugarithas
-definition, properties, graph
- Sequences
- exponenti-1, recursive sequences
- Limits of Sequaces
- definition, lem fo find limits of recursive sequence
L. Semi-log ad Doable log Plots - graphs in these coordiantes temstating between \log coocdin to and standee coordinates
Semilug Plots
Graph a $f_{0}, y=f(x)$ where the vertical axis is $Y=\log (y)$.
If the graph of a function in a serillg plot is a line, then the fraction is an exponential function.
The graph of $y=a \cdot b^{x}$ in a samil.g pot is a line w) slope $\log (b)$ and y intercept $\log (a)$.

$$
\begin{aligned}
Y=\log (y) & =\log \left(a \cdot b^{x}\right) \\
& =\log (a)+\log \left(b^{x}\right) \\
& =\log (a)+\log (b) \cdot x
\end{aligned}
$$

Ex: Consider the function $y=\frac{10 \cdot(1000)^{x}}{\text { a) Let } Y=} \begin{aligned} & \text { as } \log (y) \text { function of wite } Y\end{aligned}$
b) Graph this function on a senilog plat.
a) $y=a \cdot b^{x}$

$$
\begin{aligned}
& a=10 \\
& b=1000
\end{aligned}
$$

$$
\begin{aligned}
Y & =\log (10)+\log (1000) \cdot x \\
& =1+3 \cdot x
\end{aligned}
$$

b)

Ex: A double - lag plot is where you graph a function Y "tex pere the vertical axis is $Y=\log (y)$ and the harizantil axis is $\quad x=\log (x)$.

If the graph of a function on a dable-log plot is a line, then that function is a power function: $y=a \cdot x^{m}$.

Specifically, the graph of $y=a \cdot x^{m}$ on a double -log plot is a line with slope m and y-intercept $\log (a)$.

$$
\begin{aligned}
& y=u \cdot x^{m} \\
& Y=\log (y)=\log \left(a \cdot x^{m}\right) \\
&=\log (a)+\log \left(x^{m}\right) \\
&=\log (a)+m \cdot \log (x) \\
&=\log (a)+m \cdot X
\end{aligned}
$$

Ex: Suppose I give you this double-lag plot.
a) write Y as a f_{n} in terms of X.
b) Write y as a f_{n} in terran of x.
c) Graph y as a f_{n} in terms of x.

liners for with y-intercept 4 and slope $-\frac{1}{2}$

$$
Y=4-\frac{1}{2} X
$$

b) We wont to turn this into a power function of the form $y=a \cdot x^{m}$ y-intercept: $y=\log (a) \longleftarrow$

$$
\begin{aligned}
& 10000=10^{4}=10^{\log (9)}=a \\
& \text { slope: } m^{1}=-\frac{1}{2} \\
& y=10,000 \cdot x^{-1 / 2}=\frac{10,000}{\sqrt{x}}
\end{aligned}
$$

c)

Limits of Sequences
Ex: Consider the recursive sequence:

$$
a_{n+1}=\frac{6}{a_{n}+1} \quad a_{0}=0
$$

Find $\lim _{n \rightarrow \infty} a_{n}$

First, find the fixed points.
Plug in $a=a_{n}=a_{n+1}$.

$$
\begin{aligned}
& a=\frac{6}{a+1} \quad \text { Solve for } a . \\
& \begin{aligned}
a(a+1) & =6 \\
a^{2}+a & =6 \\
a^{2}+a-6 & =0 \quad \text { aF: } a=\frac{-1 \pm \sqrt{1^{2}-4(-6)}}{2 \cdot 1} \\
a & =\frac{-1 \pm \sqrt{1+24}}{2}=\frac{-1 \pm \sqrt{25}}{2} \\
& =\frac{-1 \pm 5}{2}
\end{aligned}
\end{aligned}
$$

$a=-3,2 \leftarrow$ Fixed points.

$$
\begin{aligned}
& a_{n+1}=\frac{6}{a_{n}+1} \quad a_{0}=0 . \\
& a_{0}=0 \\
& a_{1}=\frac{6}{a_{0}+1}=\frac{6}{0+1}=6 \\
& a_{2}=\frac{6}{a_{1}+1}=\frac{6}{6+1}=\frac{6}{7} \\
& a_{3}=\frac{6}{a_{2}+1}=\frac{6}{\frac{6}{7}+1}=\frac{6}{\frac{13}{7}}=\frac{42}{13}
\end{aligned}
$$

These numbers re all positive, so they cant be approaching -3 .

$$
\text { So } \lim _{n \rightarrow \infty} a_{n}=2 \text {. }
$$

Alternative approach: plug in wal woes close to the fined points.
For $a=2$, plug in 2.001

$$
a_{1+1}=\frac{6}{2.001+1}=1.999334 .
$$

Closer to Z, so this is a burly stable fined pl.

$$
\text { For } \begin{aligned}
a & =-3, p l o g i . ~ \\
a_{n+1} & =\frac{6}{-3.001+1}=-2.99850 \ldots
\end{aligned}
$$

Further from - 3, so this is a locrly unstable fixed point.

$$
\text { Ex: } \begin{aligned}
& a_{n+1}=\frac{6}{a_{n}+1}, a_{0}= \\
a_{0} & =-3 \\
a_{1} & =\frac{6}{-3+1}=\frac{6}{-2}=-3
\end{aligned}
$$

$$
a_{2}=\frac{6}{a_{1}+1}=\frac{6}{-3+3}=-3
$$

Sequace is $-3,-3,-3,-3, \ldots$ Linit is -3 .

