
The symbol for equality, the letter lām ,(ل) appears in both equations above. In
the second equation the second symbol from the right is the Arabic word lā, which,
in an algebraic context, functions as a minus.

The image below shows two equations, of degrees six and nine respectively,
from the work of the fifteenth-century writer Aḥmad al-Qatrawānī, who was born in
Upper Egypt but taught in Tunis. It is the first example we know of an Arabic writer
extracting roots of polynomials using algebraic symbolism rather than the tables we
saw in al-Samaw’al’s work.

The reader may use the information we have given about algebraic symbolism to
read the top polynomial (left to right) as

81x6 þ 72x5 þ 106x4 þ 184x3 þ 89x2 þ 80xþ 64.

In the case of this polynomial, the text shows how to extract its square root.

9 ‛Umar al-Khayyāmī and the Cubic Equation

9.1 The Background to ‛Umar’s Work

An older contemporary of al-Samaw’al was ‛Umar al-Khayyāmī, whose treatment
of cubic equations is found in his book Algebra. He completed this work in
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Samarqand and dedicated it to the chief judge of that city, Abū Ṭāhir, and in the
preface to this work he refers to his harried existence up to then

I have always desired to investigate all types of theorems …, giving proofs for my dis-
tinctions, because I know how urgently this is needed in the solution of difficult problems.
However, I have not been able to find time to complete this work, or to concentrate my
thoughts on it, hindered as I have been by troublesome obstacles.

When ‛Umar did have the security to concentrate on a problem his powers of
intellect were remarkable. One of his biographers, al-Bayhaqī, tells how ‛Umar read
a book seven times in Isfahan and memorized it. When he returned he wrote it out
from memory, and subsequent comparison with the original revealed very few
discrepancies. However, ‛Umar’s feats of intellect were by no means confined to a
remarkable memory, as we shall see in the sections from his great work, Algebra.

In his introduction to this work ‛Umar mentions that no algebraic treatment of
the problems he is going to discuss has come down from the ancients, but that
among the modern writers Abū ‘Abdallāh al-Māhānī wrote an algebraic analysis of
a lemma Archimedes used in the problem from his work Sphere and Cylinder II,4
which we mentioned earlier, the problem of cutting a sphere by a plane so that the
volumes of the two segments of the sphere are to one another in a given ratio.
Archimedes showed that this problem can be solved if a line segment a can be
divided into two parts b and c so that c is to a given length as a given area is to b2. If
we let b = x, so c = a – x, the proportion may be written as x3 + m = nx2, where
m is the product of the given length and area. Khayyam tells us that neither
al-Māhānī, who lived from 825–888 (and would therefore have been contemporary
with al-Khwārizmī), nor Thābit could solve this equation, but a mathematician of
the next generation, Abū Ja‛far al-Khāzin, did solve it by means of intersecting
conic sections. Then, following Abū Ja‛far, various mathematicians tried to solve
special kinds of these equations involving cubes, but no one had tried to enumerate
all possible equations of this type and solve them all. This ‛Umar says, he will do in
this treatise.

9.2 ‛Umar’s Classification of Cubic Equations

We now give an account of some parts of his treatise Algebra, and we emphasize
that although we shall speak of “equations” and “coefficients” ‛Umar did not write
these symbolically, for he used only words, even for the numbers.

In the first part of his treatise ‛Umar lists all types of equations in which no term of
degree higher than three occurs. In ‛Umar’s equations all terms appear with positive
coefficients so that, whereas we would see x3–3x + 8 = 0 and x3 + 3x – 8 = 0
as being of the same type, ‛Umar viewed them as being different. He would have
expressed the first as “Cube and numbers equal sides” (x3 + 8 = 3x) and would have
seen it as distinct from “Cube and sides equal numbers” (x3 + 3x = 8). Thus, he
arrives at 25 species of equations, and, in the remainder of the treatise, he shows how
these may be solved—11 by Euclidean methods and 14 by conic sections. For each
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of these 14 species ‛Umar gives a short section showing how the conics can be used
to produce a line segment from which solids that satisfy the required relation can be
constructed. The student who reads the English translation by D. S. Kasir will find
‛Umar’s arguments quite clear and will enjoy, as well, the many interesting asides on
the history of various types of equations.

9.3 ‛Umar’s Treatment of x3 + mx = n

Preliminaries

The equation we are going to discuss is “cube and sides equal a number,” that is,
“x3 + mx = n” and, to understand the section that we have chosen to present from
this work, the reader must recall that if ABC is a parabola with vertex B and
parameter p and if x is any abscissa and y the corresponding ordinate then y2 = p � x.

‛Umar begins with a lemma about solid figures called parallelopipeds, solids
with three pairs of parallel faces (Fig. 8a). When all the faces are rectangles
(Fig. 8b), as in the case of a brick, the solid is called a rectangular parallelopiped.
One face of a parallelopiped is arbitrarily designated as its base, and ‛Umar’s
lemma concerns the case in which the base is a square.

Lemma. Given a rectangular parallelopiped ABGDE (Fig. 9), whose base is the
square ABGD = a2 and whose height is c, and given another square MH = b2,
construct on MH a rectangular parallelopiped equal to the given solid.

Solution. Use Euclidean geometry to construct a line segment k so that a:b = b:
k; and then construct h so that a:k = h:c. Then the solid whose base is b2 and whose
height is h is equal to the given solid.

Proof. a:b = b:k implies a2:b2 = (a:b) � (a:b) = (a:b) � (b:k) = a:k, but a:k = h:
c, and so a2: b2 = h:c, and this implies a2�c = b2 �h. Thus the solid whose base is b2

and whose height is h is equal to the given solid a2 � c, and that is what we wanted
to show.

Algebraically this lemma asks for the root of a2 � c = b2 � x, given a, c and b, and
Khayyām’s constructions obtain this solution (a2 � c/b2) by first obtaining k = b2/a
and then h = (ac)/k = a2 � c/b2. The principal fact, taken as known by ‛Umar, is that
given any three straight-line segments a, b, c it is possible to find a fourth segment

Fig. 8
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d so that a:b = c.d. The segment d is called “the fourth proportional”, and Fig. 10
shows how d can be constructed.

9.4 The Main Discussion

‛Umar now comes to his first nontrivial equation, which he describes as “Cube and
sides equal a number,” i.e., the case we would write as x3 + mx = n, where m and
n are positive. For this he gives the following procedure: Let b be the side of a
square that is equal to the number of roots, i.e., b2 = m, and let h be the height of the
rectangular parallelopiped whose base is b2 and whose volume is n. (The con-
struction of h follows immediately from the previous lemma.) Now take a parabola
(Fig. 11) whose vertex is B, axis BZ and parameter b, and place h perpendicular to
BZ at B. On h as diameter describe a semicircle and let it cut the parabola at D.
From D drop DE perpendicular to h and the ordinate DZ perpendicular to BZ. Then
DZ = EB and with y = BE it follows that y3 + my = n.

Proof. Let BZ = x. By the properties of the parabola y2 = bx and, by the
properties of the circle, x2 = y(h – y). But the first equality may be written as
x:y = y:b and the second as x:y = (h – y):x. Thus (h – y):x = x:y = y:b, or, inverting,
b:y = y:x = x:(h – y). Hence b2:y2 = (b:y)(b:y) = (y :x)(x:(h – y)) = y :(h – y), and
thus b2 � (h – y) = y � y2, i.e. b2 � h – b2 �y = y3. Therefore, if we add b2 �y to both
sides it follows that b2�h = y3 + b2 � y. If we then substitute for b2 � h its equal, n,

Fig. 9

Fig. 10

9 ‛Umar al-Khayyāmī and the Cubic Equation 149



and for b2 its equal, m, we may conclude that y3 + my = n, which was the equation
we wanted to solve.

We can write the argument a bit more briefly as y2 = bx implies y4 = b2x2, and
x2 = y(h – y) implies b2x2 = b2y(h – y). Thus, y4 = b2x2 = b2y(h – y) and so,
because y 6¼ 0,

y3 ¼ b2ðh� yÞ; i:e: y3 þmy ¼ y3 þ b2 � y ¼ b2 � h ¼ n

and the equation is solved.

9.5 ‛Umar’s Discussion of the Number of Roots

Throughout the discussion ‛Umar is careful to warn the reader that a particular case
may have more than one solution (or, as we should say, more than one positive real
root) or that it may have no solutions. What happens in any given case depends on
whether the conic sections he is using intersect in none, in one or in two points. For
example, he obtains the solution to x3 + n = mx by intersecting a parabola and
hyperbola and notices that the two curves may not intersect, in which case there
would be no solution, but if they do then they either intersect tangentially or at two
points. In our modern terminology, we would express this by saying the equation
x3 + n = mx either has no positive real solution or two of them. In the latter case,
the two could be a single root, a repeated root, corresponding to a factor (x – a)2, or
two different roots. Again, in the case of x3 + n = mx2 he notes that if

ffiffiffi

n3
p � m then

there is no solution. For, if
ffiffiffi

n3
p � m then

n ¼ ffiffiffi

n3
p� �3¼ ffiffiffi

n3
p ffiffiffi

n3
p� �2 �m
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n3
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This implies that if x is any solution then x[
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