
Chapter Eight

Ancient Indian Mathematics

A Restatement of Intent and a Brief Historical Sketch

Ancient Indian history raises many problems. The period before the 
Christian era takes on a haziness that seems to have prompted opposing 
reactions. There are those who make excessive claims for the antiquity of 
Indian mathematics, and others who go to the opposite extreme and deny 
the existence of any “real” Indian mathematics before about AD 500. The 
principal motive of the former is to emphasize the uniqueness of Indian 
mathematical achievements. In this view, if there was any influence, it was 
always a one-way traffic from India to the rest of the world. The motives 
of the latter are more mixed. For some their Eurocentrism (or Graeco-
centrism) is so deeply entrenched that they cannot bring themselves to 
face the idea of independent developments in early Indian mathematics, 
even as a remote possibility.1

A good illustration of this blinkered vision is provided by a widely re-
spected historian of mathematics at the turn of the twentieth century, Paul 
Tannery. Confronted with the evidence from Islamic sources that the In-
dians were the first to use the sine function as we know it today, Tannery 
devoted himself to seeking ways in which the Indians could have acquired 
the concept from the Greeks. For Tannery, the very fact that the Indians 
knew and used sines in their astronomical calculations was sufficient evi-
dence that they must have had it from the Greeks.2 But why this tunnel 
vision? The following quotation from G. R. Kaye (1915) is illuminating:

The achievements of the Greeks in mathematics and art form the most 
wonderful chapters in the history of civilisation, and these achieve-
ments are the admiration of western scholars. It is therefore natural that 
western investigators in the history of knowledge should seek for traces 
of Greek influence in later manifestations of art, and mathematics in 
particular.
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312  Chapter 8

It is particularly unfortunate that Kaye is still quoted as an authority on 
Indian mathematics. Not only did he devote much attention to showing 
the derivative nature of Indian mathematics, usually on dubious linguistic 
grounds (his knowledge of Sanskrit was such that he depended largely on 
indigenous pandits for translations of primary sources), but he was pre-
pared to neglect the weight of contemporary evidence and scholarship 
to promote his own viewpoint. So, while everyone else claimed that the 
Bakhshali Manuscript (discussed at the end of this chapter) was written 
or copied from an earlier text dating back to the first few centuries of the 
Christian era, Kaye insisted that it was no older than the twelfth century 
AD. Again, while the Islamic sources unanimously attributed the origin of 
our present-day numerals to the Indians, Kaye was of a different opinion. 
And the distortions that resulted from Kaye’s work have to be taken seri-
ously because of his influence on Western historians of mathematics, many 
of whom remained immune to findings that refuted Kaye’s inferences and 
established the strength of the alternative position much more effectively 
than is generally recognized.

This tunnel vision is not confined to mathematics alone. Surprised at 
the accuracy of information on the preparation of alkalis contained in an 
early Indian textbook on medicine (Sushruta Samhita)3 dating back to a 
few centuries BC, an eminent chemist and historian of the subject, M. Ber-
thelot (1827–1909), suggested that this was a later insertion, after the Indi-
ans had come into contact with European chemistry!

While non-European chauvinism (on the part of, for example, the 
Arabs, Chinese, and Indians) does persist, “arrogant ignorance”—as J. D. 
Bernal (1969) described the character of Eurocentric scholarship in the 
history of science—is the other side of the same coin. But the latter ten-
dency has done more harm than the former because it rode upon the po-
litical domination imposed by the West, which imprinted its own version 
of knowledge on the rest of the world.

Table 8.1 offers a brief summary of the main events in the long history of 
India as a backdrop to the development of mathematics; it divides Indian 
history up to the beginning of the sixteenth century into six periods. The 
map of India in figure 8.1 shows places mentioned in the text. The earli-
est evidence of mathematics is found among the ruins of the Indus Valley 
civilization, which goes back to 3000 BC. (It is perhaps more appropriately 
referred to as the Harappan civilization, since at its peak it spread far be-
yond the Indus Valley itself.) Around 1500 BC, according to the traditional 
—though increasingly contentious—view among historians, a group of 
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Ancient Indian Mathematics  313 

Table 8.1:  Chronology of Indian History and Mathematics

Period	 Main historical events	 Mathematics	 Notable  
			   mathematicians

3000–1500 BC	 The Indus Valley	 Weights, artistic 
	 civilization (script	 designs, “Indus scale”; 
	 undeciphered) 	 brick technology 
	 covering 1–2 million	 probably influenced 
	 square km; main urban	 the construction of 
	 centers Harappa, 	 Vedic altars in the next 
	 Lothal, and Mohenjo-	 period 
	 Daro
1500–500 BC	 The coming of the 	 Vedangas and	 Baudhayana,
	 Aryans; the formation	 Sulbasutras; problems	 Apastamba,
	 of Hindu civilization;	 in astronomy, arith-	 Katyayana 
	 the emergence of the	 metical operations, 
	 Code of Manu; the	 Vedic geometry
	 recording of the Vedas 
	 and Upanishads
500–200	 The establishment of	 Vedic mathematics 
	 Indian states; the rise of	 continues during the 
	 Buddhism and Jainism; 	 earlier years but 
	 contacts with Persia	 declines with ending 
	 maintained; the	 of ritual sacrifices; 
	 Mauryan empire,	 beginnings of Jaina 
	 culminating in the reign	 mathematics: number 
	 of Asoka, who spread	 theory, permutations 
	 Buddhism abroad	 and combinations, the 
		  binomial theorem; 
		  astronomy
200 BC–AD 400	 Triple division: Kushan	 Jaina mathematics: 
	 dynasty (North), 	 rules of mathematical 
	 Pandyas (South), 	 operations, decimal- 
	 Bactrian-Persian 	 place notation, first use 
	 (Punjab); pervading	 of 0; algebra including 
	 influence of Buddhism	 simple, simultaneous, 
	 in art and sculpture	 and quadratic equations; 
		  square roots; details of 
		  how to represent 
		  unknown quantities  
		  and negative signs
	 continued
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314  Chapter 8

people descended from the north and destroyed the Harappan culture, but 
not before they had absorbed some of its features. These invaders are often 
referred to as “Aryans”—a term that has acquired an unfortunate connota-
tion in modern times through its association with the Nazis.

The Aryans were a pastoral people, speaking a language that belonged 
to the Indo-European family. It remained for a long time a spoken rather 
than a written language, with writing initially restricted to the vernaculars. 
Over the years this language, Sanskrit, developed sufficiently to become a 
suitable medium for religious, scientific, and philosophical discourse. Its 
potential for scientific use was greatly enhanced as a result of the thorough 
systematization of its grammar by Panini, about 2,600 years ago. In a book 
titled Astadhyayi (Eight Chapters), Panini offered what must be the first 
attempt at a structural analysis of a language. On the basis of just under 
four thousand sutras (i.e., rules expressed as aphorisms), he built virtually 

Table 8.1:  Continued

Period	 Main historical events	 Mathematics	 Notable  
			   mathematicians

400–1200	 Imperial Guptas	 The Classical period	 Aryabhata I, 
	 reaching their height in	 of Indian mathematics;	 Varahamihira, 
	 the reign of Harsha	 important works: the	 Bhaskara I, 
	 (606–647); flowering	 Bakshali Manuscript,	 Brahmagupta, 
	 of Indian civilization	 Aryabhatiya, Panca-	 Sridhara,
	 as shown in science,	 siddhantika,	 Mahavira,
	 philosophy, medicine,	 Aryabhatiya Bhasya,	 Bhaskara II
	 logic, grammar, and	 Maha Bhaskariya,	 (also known as
	 literature	 Brahma Shputa-	 Bhaskaracharya)
		  siddhanta, Patiganita,
		  Ganita Sara Samgraha,
		  Ganitilaka, Lilavati, 
		  Bijaganita
1200–1600	 Early Muslim dynasties;	 Decline of mathe-	 Narayana, 
	 birth of Sikhism; the	 matics and learning	 Madhava, 
	 Hindu kingdom of	 in the North; the rise	 Nilakantha 
	 Vijaynagar in the South	 of the Kerala school  
		  of astronomy and 
		  mathematics; work  
		  on infinite series and  
		  analysis
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Ancient Indian Mathematics  315 

the whole structure of “Classical” Sanskrit language, whose general “shape” 
hardly changed for the next two thousand years. Sanskrit served as a useful 
medium for recording early scriptural texts such as the Vedas and Upa‑
nishads, early scientific literature such as the Vedangas (or Limbs of the 
Vedas), and early rules of social conduct such as the Code of Manu.

Figure 8.1: Map of India and (inset) Southeast Asia
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316  Chapter 8

An indirect consequence of Panini’s efforts to increase the linguistic 
facility of Sanskrit soon became apparent in the character of scientific 
and mathematical literature. This may be brought out by comparing the 
grammar of Sanskrit with the geometry of Euclid—a particularly apposite 
comparison since, whereas mathematics grew out of philosophy in ancient 
Greece, it was, as we shall see, partly an outcome of linguistic develop-
ments in India.

The geometry of Euclid’s Elements starts with a few definitions, axioms, 
and postulates and then proceeds to build up an imposing structure of 
closely interlinked theorems, each of which is in itself logically coherent 
and complete. In a similar fashion, Panini began his study of Sanskrit by 
taking about seventeen hundred basic building blocks—some general con-
cepts, vowels and consonants, nouns, pronouns and verbs, and so on—and 
proceeded to group them into various classes. With these roots and some 
appropriate suffixes and prefixes, he constructed compound words by a 
process not dissimilar to the way in which one specifies a function in mod-
ern mathematics. Consequently, the linguistic facility of the language came 
to be reflected in the character of mathematical literature and reasoning in 
India. Indeed, it may even be argued that the algebraic character of ancient 
Indian mathematics is but a by-product of the well-established linguistic 
tradition of representing numbers by words.

The third period of Indian history began around 800 BC. It saw not only 
the establishment of two of the great religions originating in India, Bud-
dhism and Jainism, but also the growth of independent states, a number of 
which were later merged to form the first of the great empires of India, the 
Mauryan empire. This period marked the decline of Vedic mathematics 
and the gradual emergence of the Jaina school, which was to do notable 
work in number theory, permutations and combinations, as well as other 
abstract areas of mathematics.

The fourth period, from about 200 BC, was a period of instability and 
fragmentation brought about by waves of foreign invasions. But it was also 
a time of useful cross-cultural contacts with neighbors and with the Hel-
lenistic world, bringing fresh ideas into Indian science and laying the foun-
dation for great advances in the next period. The Kushan empire became 
an important vehicle for spreading not only Buddhist religion and art but 
also Indian science, particularly astronomy, into western Asia. Probably 
the only piece of existing mathematical evidence from this period is the 
Bakhshali Manuscript. However, the earlier dating of this manuscript to 

This content downloaded from 
�����������128.163.2.206 on Wed, 12 Jul 2023 15:02:25 +00:00������������ 

All use subject to https://about.jstor.org/terms



Ancient Indian Mathematics  317 

the third century is based on an estimate made by Hoernle, who was the 
first to study it. On the basis of recent evidence, notably that of Hayashi 
(1995), the manuscript cannot be dated earlier than the eighth century.

The fifth period, from the third to the twelfth centuries, is often referred 
to as the Classical period of Indian civilization. The earlier part of this 
period saw much of India ruled by the imperial Guptas, who encouraged 
the study of science, philosophy, medicine, and other arts. Mathemati-
cal activities reached a climax with the appearance of the famous quartet: 
Aryabhata, Brabmagupta, Mahavira, and Bhaskaracharya. Their lives and 
works will be examined in the next chapter. Indian work on astronomy 
and mathematics spread westward, reaching the Islamic world, where it 
was absorbed, refined, and augmented before being transmitted to Europe.

The last period, which we may describe as the “medieval” period of In-
dian history, saw the rise of great states in southern India and a migration 
of mathematics and astronomy from the North to the South, probably as a 
result of political upheavals. It was believed for a long time that mathemati-
cal development came virtually to a stop in India after Bhaskaracharya in 
the twelfth century. There may be some element of truth in this as far as the 
North was concerned, but in the South—and particularly in the Southwest, 
in the area corresponding to the present-day state of Kerala—this was a 
period marked by remarkable studies of infinite series and mathematical 
analysis that predated similar work in Europe by about three hundred years.

The mathematics of Kerala will be presented in a separate chapter. In this 
chapter we examine Indian mathematics from its early beginnings to just 
before the Classical period; in the next chapter we consider mainly Classi-
cal Indian mathematics. The development of Indian numerals is dealt with 
in this chapter, though there is some historical overlap, particularly when 
one considers the spread of the numerals into countries such as Cambodia 
and Java to the east, and into the Islamic world to the west. The reader may 
wish to refer to table 8.1 and figure 8.1 whenever necessary to sketch in the 
historical and geographical background to this and the next chapter.

Math from Bricks: Evidence from the Harappan Culture

Between 1921 and 1923 a series of archaeological excavations along the 
banks of the Indus uncovered the remains of two urban centers, at Harappa 
and Mohenjo-Daro, dating back to about 3000 BC. Subsequent searches 
over the last four decades have revealed further remains spread across an 
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338  Chapter 8

Early Indian Numerals and Their Development

Three early types of Indian numerals are shown in table 8.2 in chrono-
logical order of appearance. The Kharosthi-type numerals, derived from 
the Aramaic script, are found in inscriptions dating to a period from the 
fourth century BC to the second century AD. Special symbols were used 
to show both 10 and 20. Numbers up to 100 were then built up additively; 
for larger numbers the multiplication principle came into operation, with 
special symbols for higher powers of 10. Following from their West Asian 
origins, the Kharosthi numerals were written from right to left. The most 
complete example of this type of numerals is the Saka numerals from 
around the first century BC. The Brahmi-type numerals were more highly 
developed. There were separate symbols for the digits 1, 4 to 9, and the 
number 10 and its higher powers. There were also symbols for multiples 
of 10 up to 90, and for multiples of 100 up to 900. The number 486, for 
example, would be written by using the symbols for 400, 80, and 6. It is 
possible that our symbols “2” and “3” are cursive versions of the Brahmi 
numerals (i.e., from  and  may have evolved 2 and 3). 

The earliest trace of Brahmi-type numerals is from the third century 
BC, on the Asoka pillars scattered around India, though more detailed 
pieces of evidence are found elsewhere later. At the top of Nana Ghat near 
Poona in central India is a cave that must once have been a resting place for 
travelers; inscribed on the cave walls are numerals representing the signs 
for 10 and 7, which date back to 150 BC. Another version of the Brahmi 
numerals (shown in table 8.2) is found at Nasik, near present-day Bom-
bay (now Mumbai), from around 100 BC. Both versions resemble each 

Table 8.2:  Three Types of Indian Numerals, in Chronological 
Order

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

Kharosthi

Brahmi

Gwalior

Note: The Kharosthi numeral for 9 is not known for certain

This content downloaded from 
�����������128.163.2.206 on Wed, 12 Jul 2023 15:02:25 +00:00������������ 

All use subject to https://about.jstor.org/terms



Ancient Indian Mathematics  339 

other, and it was thought until recently that from them evolved first the 
Bakhshali number system (c. AD 400–1200) and then the Gwalior system 
(c. AD 850), which is recognizably close to our present-day number sys-
tem.13 In both the Bakhshali and Gwalior number systems, ten symbols 
were used to represent 1 to 9 and zero. With them it became possible to 
express any number, no matter how large, by a decimal place-value system.

The earliest appearance of the symbol that we associate with zero in In-
dia in a decimal place-value system is in an inscription from Gwalior dated 
“Samvat 933” (AD 876), where the numbers 50 and 270 are given as  
and  respectively. Note the close similarity with our notation for 270. 
For earlier evidence, we have to turn to Southeast Asia when it was under 
the cultural influence of India. There, three inscriptions have been found 
bearing dates in the Saka era, which began in AD 78. A Malay inscription 
at Palembang in Sumatra from AD 684 shows 60 and 606 Saka as  
and  respectively, a Khmer inscription at Sambor in Cambodia 
from AD 683 gives 605 as , and an inscription at Ponagar, Champa 
(now southern Vietnam), from AD 813 represents 735 as . If, how-
ever, the original version of the Bakhshali Manuscript dates from the third 
century AD, it would be the earliest evidence of a well-established number 
system with a place-value scale and zero that is also recognizably an ances-
tor of our present-day number system. In the Bakhshali Manuscript are 
found the following numbers:

330: ,	 846,720: ,	 947: .

What we have here is a fully developed decimal place-value system incor-
porating zero.

The Emergence of the Place-Value Principle
Fascination with numbers has been an abiding characteristic of Indian 
civilization. Not only large numbers but very small ones as well. Opera-
tions with zero attracted the interest of both Bhaskaracharya (b. 1114) and 
Srinivas Ramanujan (1887–1920). In an elementary class that Ramanujan 
attended, the teacher was explaining the concept of division (or “sharing”) 
through examples: between three children, each child would get one ba-
nana. Similarly, the share would be one banana if four bananas were shared 
among four children, five bananas among five children, and so on. And 
when the teacher generalized this idea of sharing x bananas among x boys, 
Ramanujan asked whether, if x equaled zero, each child would then get 
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340  Chapter 8

one banana! There is no record of the teacher’s reply. Ramanujan explained 
later to his school friends that zero divided by zero could be anything, 
since the zero of the denominator may be any number of times the zero of 
the numerator.

Two important features of early numeration may have been of signifi-
cance in the subsequent development of Indian numerals. Ever since the 
Harappan period the number 10 may have formed the basis of numera-
tion; there is no evidence of the use of any other base in the whole of San-
skrit literature. Long lists of number-names for powers of 10 are found 
in various early sources. For example, one of the four major Vedas, the 
Yajur-veda, gives special names for powers of ten from one or 100 (eka) to 
one trillion or 1012 (parardha). In the Ramayana, one of the most popular 
texts of Hinduism and roughly contemporaneous with the later Vedas, it is 
reported that Ravana, the chief villain of the piece, commanded an army 
whose total equaled 1012 + 105 + 36(104). Facing them was the rival army 
of Rama, the hero of the epic, which had 1010 + 1014 + 1020 + 1024 + 1030 
+ 1034 + 1040 + 1044 + 1052 + 1057 + 1062 + 5 men! Even though these 
numbers are fantastic, the very existence of names for powers of ten up 
to 62 indicates that the Vedic Indians were quite at home with very large 
numbers. This is to be compared with the ancient Greeks, who had no 
words for numbers above the myriad (104).

And these were by no means the largest numbers ever conceived in an-
cient India. The Jains, who came after the Vedic Indians, were particularly 
fascinated by even larger numbers, which were intimately tied up with 
their philosophy of time and space. This fascination with large numbers is 
also found in Buddhist literature. In the life of the Buddha, as reported in 
Lalita-vistara, the young Buddha, as part of a competion to win the hand 
of the princess Gopa, recites a table that includes names for powers of 10 
going up to the fiftieth power.14 (We shall look at the Jaina contribution in 
detail in a later section.) For units of measuring time, the Jains suggested 
the following relationships:

1 756 10
( , , ) .

purvis
shirsa prahelika purvis1 8 400 000

days;11

28

#=

=

The last number contains 194 digits!
The early use of such large numbers eventually led to the adoption of 

a series of names for successive powers of 10. The importance of these 
number-names in the evolution of the decimal place-value notation cannot 
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Ancient Indian Mathematics  341 

be exaggerated. The word-numeral system, later replaced by an alphabetic 
notation, was the logical outcome of proceeding by multiples of 10. Thus 
60,799 is sasti (sixty) sahasra (thousand) sapta (seven) sata (hundred) na‑
vati (nine ten times) nava (nine). Such a system presupposes a scientifically 
based vocabulary of number-names in which the principles of addition, 
subtraction, and multiplication are used. It requires: 

1. � The naming of the first nine digits (eka, dvi, tri, catur, pancha, sat, 
sapta, asta, nava)

2. � A second group of nine numbers obtained by multiplying each of the 
first nine digits by ten (dasa, vimsati, trimsat, catvarimsat, panchasat, 
sasti, saptati, asiti, navati)

3. � A group of numbers that are increasing integral powers of 10, start-
ing with 102 (sata, sahasra, ayuta, niyuta, prayuta, arbuda, nyarbuda, 
samudra, madhya, anta, parardha . . .).

In forming the words of the second and third groups of numbers, the 
multiplicative principle applies, as in the example quoted: 60,000 is sasti-
sahasra. The additive principle is employed when the numbers from the 
first and second group are used, for example, 27 is sapta‑vimsati. The sub-
tractive principle may apply occasionally and in a limited way; for example, 
ekanna‑catvarimsat indicates 40 - 1 = 39, where ekanna means “one less.”

To understand why word‑numerals persisted in India, even after the 
Indian numerals became widespread, it is necessary to recognize the im-
portance of the oral mode of preserving and disseminating knowledge. An 
important characteristic of written texts in India from time immemorial 
was the sutra style of writing, which presented information in a cryptic 
form, leaving out details and rationale to be filled in by teachers and com-
mentators. In short pithy sentences, often expressed in verses, the sutras 
enabled the reader to memorize the content easily.

As a replacement for the older word‑numeral system that consisted 
of merely names of numbers, a new system (a concrete number system) 
was devised to help versification and memory. In this system, known as 
bhuta‑samkhya, numbers were indicated by well‑known objects or ideas. 
Thus, zero was shunya (void) or ambara akasa (heavenly space or sky or 
ether) or other empty things, one was candra (moon) or bhumi (earth) 
or other single things, two was netra (eyes) or paksa (wings of a bird) or 
other pairs, three was kala (time: past, present, and future) or loka (heaven, 
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342  Chapter 8

earth, and hell) or other trios, and so on. With multiple words available for 
each number, the choice of a particular word for a number would be dic-
tated by literary considerations. This form of notation continued for many 
years in both secular and religious writings because it was aesthetically 
pleasing and offered an easier way of remembering numbers and rules.

There were two major problems with the bhuta-samkhya system. First, 
there was an “exclusionist” element, in that to decode the words for their 
numerical values required considerable familiarity with the philosophical 
and religious texts from which the correspondences were established in the 
first place. Second, at times the same word stood for two or more different 
numbers, since some writers had their own preferences when it came to 
choosing words to correspond to numbers as, for example, when paksa was 
used for 2 as well as 15 and dik for 8, 10, and 4.

There are traces of this system of numeration in the Yavanajataka (AD 
269) of Sphujidhvaja, although the first clearest and detailed evidence of it 
is found in the works of the astronomer Varahamihira (d. AD 587). Thus, 
except for the actual symbols themselves, the present-day number system 
with distinct numerals for the numbers from zero to 9, the place-value 
principle, and the use of the zero within the decimal base is essentially 
what we see in this early number system.15 In a sense, what is used as a 
symbol for a number, whether it be a letter, a word, or a specially invented 
squiggle, is of little importance. Indeed, an unduly close association—or 
even identity—between a number and the symbol used to represent it 
may even be counterproductive, preventing the strength of the place-value 
principle from being fully exploited in elementary operations.

A third system of numerical notation originated with Aryabhata (b. 
476 AD). In his Aryabhatiya, he introduced an alphabetical scheme for 
representing numerals, based on distinguishing between classified (varga) 
and unclassified (avarga) consonants and vowels. The vargas fall into five 
phonetic groups: ka‑varga (guttural), ca‑varga (palatal), ta‑varga (lingual), 
ta‑varga (dental), and pa‑varga (labial). Each group has five letters associ-
ated to it, and represented numbers from 1 to 25. There were seven avargas 
consisting of semivowels and sibilants representing numerical values 30, 
40, 50, . . . , 190. An eighth avarga was used to extend the number to the 
next place value. The ten vowels denoted successive integral powers of 10 
from 100 onward.

This form of representation, closer to the system that preceded bhuta-
samkhya, has the advantage of brevity and clarity but the disadvantage of 
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Ancient Indian Mathematics  343 

having limited potential for formations of words that are pronounceable 
and meaningful, both necessary requirements for easy memorization. For 
example, in the Aryabhatan system, the representation of the number of 
revolutions of the moon in a yuga (calculated as 57,753,336 days) is the 
unpronounceable and meaningless word cayagiyinusuchlr!

From a refinement of Aryabhata’s alphabet‑numeral system of notation 
emerged the katapayadi system, which the legendary founder of the Kerala 
school of astronomy, Varurici, was believed to have popularized around 
the fourth century AD. In this system, every number in the decimal place-
value system can be represented by words, each letter of the word repre-
senting a digit. A vowel not preceded by a consonant stands for zero, but 
vowels following consonants have no special value. In the case of conjunct 
consonants (a combination of two or more consonants), only the last con-
sonant has a numerical value. Number‑words are read from right to left so 
that the letter denoting the “units” is given first, and so on.

This was a system devised to help memorization, since memorable 
words can be made up using different chronograms. For example, if such 
a system is applied to English, the letters b, c, d, f, g, h, j, k, l, m would 
represent the numbers zero to 9. So would n, p, q, r, s, t, v, w, x, y. The last 
letter, z, denotes zero. The vowels, a, e, i, o, u are helpful in forming mean-
ingful words but have no numerical values associated with them. Thus, 
the sentence “I love Madras” represents the numbers 86 and 9,234. To take 
another example from Kunjunni Raja (1963, p. 123), the number 1,729,133 
could be represented by balakalatram saukhyam (i.e., the [company] of a 
young woman is sheer happiness) or lingavyadhir asahyah (i.e., the demise 
of sexual virility is unbearable).

The close relationship between literacy and numeracy, implied by such 
varied systems of numerical notation, may have its roots in the way that 
Sanskrit developed in its formative period after its separation from other 
languages of the Indo‑European family. A long tradition of oral communi-
cation of knowledge was a characteristic of that period and left a singular 
mark on the nature and transmission of knowledge, whether religious or 
scientific, in Indian culture. After many years, as Sanskrit became a written 
language, three kinds of scientific Sanskrit developed with varying degrees 
of artificiality: grammatical, logical, and mathematical Sanskrit.

Mathematical Sanskrit remained the least artificial of the three, with 
the greatest artificiality found in the development of grammatical Sanskrit 
by Panini and Patanjali, followed five hundred years later by the logical 
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Sanskrit of Nyaya, which culminated a thousand years later in Navya‑
Nyaya. This has important implications for a comparative study of the 
historical development of Indian and Western mathematics, according to 
Staal (1995). First, the chronological order of the development of artificial 
scientific languages in the West was a reversal of the Indian experience. In 
the West, logic followed mathematics, and linguistics was a late developer. 
In India, mathematical Sanskrit never quite became an artificial language, 
although it employed abbreviations and artificial notations outside San-
skrit as shorthand for practical procedures. And logical Sanskrit never be-
came, like its Western counterpart, an important adjunct to “mathematical 
philosophy.”

The Enormity of Zero
The word “zero” comes from the Arabic al-sifr.16 Sifr in turn is a translit-
eration of the Sanskrit word shunya, meaning void or empty, which later 
became the term for zero. Introduced into Europe during the Italian Re-
naissance in the twelfth century by Leonardo Fibonacci (and by Nemo-
rarius, a less well-known mathematician) as cifra, the word emerged in 
English as “cipher.” In French it became chiffre, and in German ziffer, both 
of which mean zero. 

The ancient Egyptians never used a zero symbol in writing their numer-
als. Instead they had a stand-alone zero to represent a benchmark value 
or magnitude. A bookkeeper’s record from the Thirteenth dynasty (about 
1700 BC) shows a monthly balance sheet for items received and disbursed 
by the royal court during its travels. On subtracting total disbursements 
from total income, a zero remainder was left in several columns. This zero 
remainder was represented by the hieroglyph nfr, which also means beau-
tiful or complete in ancient Egyptian. The same nfr symbol also labeled a 
zero reference point for a system of integers used on construction guide-
lines at Egyptian tombs and pyramids. These massive stone structures re-
quired deep foundations and careful leveling of the courses of stone. A 
vertical number-line labeled the horizontal leveling lines that guided con-
struction at different levels. One of these horizontal lines, often at pave-
ment level, was used as a reference and was labeled nfr or zero. Horizontal 
leveling lines were spaced 1 cubit apart. Those above the zero level were 
labeled as 1 cubit above nfr, 2 cubits above nfr, and so on. Those below the 
zero level were labeled 1 cubit below nfr, 2 cubits below, and so forth. Here 
zero was used as a reference for directed or signed numbers.
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It is quite extraordinary that the Mesopotamian culture, more or less 
contemporaneous to the Egyptian culture, developed a full positional-
value number system on base 60 and did not use zero as a number. A sym-
bol for zero as a placeholder appeared late in the Mesopotamian culture. 
The early Greeks, who were the intellectual inheritors of Egyptian math-
ematics and science, emphasized geometry to the exclusion of everything 
else. They did not seem interested in perfecting their number notation sys-
tem. They simply had no use for zero. In any case, they were not greatly 
interested in arithmetic, claiming that arithmetic should only be taught 
in democracies, for it “dealt with relations of equality.” On the other hand, 
geometry was the natural study for oligarchies, for “it demonstrated the 
proportions within inequality.”17

In India, zero as a concept probably predated zero as a number by hun-
dreds of years. The Sanskrit word for zero, shunya, meant “void” or “empty.” 
The word is probably derived from shuna, which is the past participle of 
svi, “to grow.” In one of the early Vedas, Rig-veda, there is another mean-
ing: the sense of “lack” or “deficiency.” It is possible that the two different 
words were fused to give shunya a single sense of “absence” or “emptiness” 
with the potential for growth. Hence, its derivative, Shunyata, described 
the Buddhist doctrine of “Emptiness,” being the spiritual practice of emp-
tying the mind of all impressions. This was a course of action prescribed in 
a wide range of creative endeavors. For example, the practice of Shunyata 
is recommended in writing poetry, composing a piece of music, producing 
a painting, or in any activity that comes out of the mind of the artist. An 
architect was advised in the traditional manuals of architecture (the Silpas) 
that designing a building involved the organization of empty space, for “it 
is not the walls that make a building but the empty spaces created by the 
walls.” The whole process of creation is vividly described in the following 
verse from a Tantric Buddhist text: 

First the realization of the void [shunya],
Second the seed in which all is concentrated,
Third the physical manifestation,
Fourth one should implant the syllable.

The mathematical correspondence was soon established. “Just as empti-
ness of space is a necessary condition for the appearance of any object, the 
number zero being no number at all is the condition for the existence of 
all numbers.”
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A discussion of the mathematics of the shunya involves three related 
issues: (1) the concept of the shunya within a place-value system, (2) the 
symbols used for shunya, and (3) mathematical operations with the shunya. 
Materials from appropriate early texts are used as illustrations below. 

It was soon recognized that the shunya denoted notational place (place-
holder) as well as the “void,” or absence of numerical value, in a particular 
notational place. Consequently all numerical quantities, however great, 
could be represented with just ten symbols. A twelfth-century text (Mana‑
sollasa) states:

Basically, there are only nine digits, starting from “one” and going to 
“nine.” By adding the zeros these are raised successively to tens, hun-
dreds, and beyond. 

And in a commentary on Patanjali’s Yogasutra there appears in the fifth 
century the following analogy:18

Just as the same sign is called a hundred in the “hundreds” place, ten 
in the “tens” place, and one in the “units” place, so is one and the same 
woman referred to (differently) as mother, daughter, or sister. 

One of the earliest mentions of a symbol for zero occurs in the Chan‑
dahsutra of Pingala (fl. third century BC), which discusses a method for 
calculating the number of arrangements of long and short syllables in a 
meter containing a certain number of syllables (i.e., the number of com-
binations of two items from a total of n items, repetitions being allowed). 
The symbol for shunya began as a dot (bindu), found in inscriptions in In-
dia, Cambodia, and Sumatra around the seventh and eighth centuries, and 
then became a circle (chidra or randhra, meaning a hole). The association 
between the concept of zero and its symbol was already well established by 
the early centuries of the Christian era, as the following quotation shows:

The stars shone forth, like zero dots [shunya-bindu] scattered in the sky 
as if on a blue rug, [such that] the Creator reckoned the total with a bit 
of the moon for chalk. (Vasavadatta, c. AD 400)

Sanskrit texts on mathematics/astronomy from the time of Brahma-
gupta usually contain a section called shunya-ganita or computations in-
volving zero. While the discussion in the arithmetical texts (patiganita) 
is limited only to addition, subtraction, and multiplication with zero, the 
treatment in algebra texts (bijaganita) covers such questions as the effect 
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of zero on the positive and negative signs, division with zero, and more 
particularly the relation between zero and infinity (ananta).

Take, as an example, Brahmagupta’s seventh-century text Brahma 
Sphuta Siddhanta. In it he treats the zero as a separate entity from the posi-
tive (dhana) and negative (rina) quantities, implying that shunya is neither 
positive nor negative but denotes the boundary between the two kinds, 
being the sum of two equal but opposite quantities. He states that a num-
ber, whether positive or negative, remains unchanged when zero is added 
to or subtracted from it. In multiplication with zero, the product is zero. 
A zero divided by zero or by some number becomes zero. Likewise the 
square and square root of zero is zero. But when a number is divided by 
zero, the answer is an undefined quantity, “that which has that zero as the 
denominator.”19 In the twelfth century, Bhaskaracharya stated that if you 
were to divide by zero you would get a number that was “as infinite as the 
god Vishnu”!

The Spread of Numeracy in India: A Historical Perspective
A search for the social origins of numeracy must consider the everyday 
practices and institutions that make the numerals and operations with 
them familiar to the ordinary person. The structure of Indian mathematics 
education for all may have been set by a Jaina text, called Sthananga Su‑
tra, dating back to about 300 BC. In that, the first two topics out of ten, 
parikarma (number representation and the four fundamental operations 
of arithmetic) and vyavahara (arithmetic problems, including the “rule of 
three”), came to be referred to as patiganita (etymology: “calculation on 
tablet”) and were meant to be studied by all. The other eight topics were 
plane geometry calculations as carried out with a rope (rajju), mensuration 
of plane figures and solids (rasi), advanced treatment of fractions (kalasa‑
varna), study of that which is unknown or algebra (yavat-tavat), problems 
involving squares and square roots (varga), problems involving cubes and 
cube roots (ghana), problems involving higher powers and higher roots 
(varga‑varga), and permutations and combinations (vikalpa).

Although being taught at home was the usual practice for the higher-
caste males and for all females, all other castes attended schools. There 
are early British descriptions of indigenous village schools where emphasis 
on numeracy was an important part of the school curriculum. A report, 
submitted in 1838 by William Adam, of such schools in certain districts 
of Bengal and Bihar (Dharampal 1983) is quite illuminating. The period 
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a student spent in an elementary school was divided into four stages. The 
first stage, when the child first entered school, seldom exceeded ten days. 
During that time the young child was taught “to form letters of the alpha-
bet on the ground with a small stick or slip of bamboo,” or on a sand board, 
a board on which sand was sprinkled as a writing surface.The second stage, 
lasting from two and a half to four years, involved pupils being taught to 
read from and write on palm leaves. During the same period, the pupil 
was expected to memorize “the Cowrie Table, the Numeration Table as 
far as 100, the Katha Table and the Ser Table,” the latter two being tables 
of weights and measures. To help them with this enormous task, different 
systems of word‑numerals were taught. The third stage, lasting from two 
to three years, was spent on improving their literary skills practiced on 
plantain leaf, as well as completing the basic course on patiganita. In the 
fourth and final stage, lasting up to two years, pupils were expected to read 
religious and other texts, both at school and at home, undergo training in 
commercial and agricultural accounts, and compose letters and petitions. 
A few would continue their education in institutions or within the house-
hold, where Sanskrit was the language of instruction and the teachers and 
students were predominantly Brahmins.

Apart from numeracy skills, patiganita consisted of all the mathematics 
needed for daily living. The vyavaharaganita included problems involving 
calculation of volumes of grains and heaps, estimating amounts in piles of 
bricks and timber, construction of roads and building, calculation of the time 
of the day, interest and capital calculations, barter and exchange, and recre-
ational problems. In modern terminology, this was practical mathematics, 
which included commercial mathematics. The authors who wrote texts on 
patiganita, such as the unknown author of Bakhshali Manuscript, or Maha-
vira (fl. 850 AD), or Sridhara (fl. AD 800) began with a review of arithmetic 
operations, though the extent and detail to which this was done varied with 
different texts; the earlier the text, the more detailed the treatment.

The level of numeracy in traditional Indian society was high, partly be-
cause of the manner in which numeracy was acquired and passed on and 
partly because of the lack of any institutional, religious, or philosophical 
inhibitions to the acquisition and practice of numeracy. Yet the absence 
of a commercial revolution in India meant that the social milieu that nur-
tured interest in matters scientific in Europe was missing. In particular, no 
artificial language evolved, and while notations were fun and intellectually 
distracting, they did little to advance science, which ultimately stagnated. 
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And practical mathematics, the handmaiden of numeracy, continued to 
remain at the same level for about a thousand years, eventually to be sub-
merged by the rise of Western mathematics. Even the remnants of indig-
enous numeracy that exist in subterranean occupations, such as astrology 
and traditional architecture, may soon become a historical memory.

Jaina Mathematics

The rise of Buddhism and Jainism around the middle of the first millen-
nium BC was in part a reaction to some of the excesses of Vedic religious 
and social practices. The resulting decline in offerings of Vedic sacrifices, 
which had played such a central role in Hindu ritual, meant that occasions 
for constructing altars requiring practical skills and geometric knowledge 
became few and far between. There was also a gradual change in the per-
ception of the role of mathematics: from fulfilling the needs of sacrificial 
ritual, it became an abstract discipline to be cultivated for its own sake. 
The Jaina contribution to this change should be recognized. Unfortunately, 
sources of information on Jaina mathematics are scarce, though there are 
enough to show how original the work was.

A number of Jaina texts of mathematical importance have yet to be 
studied, and what we know of them is based almost entirely on later com-
mentaries. Of particular relevance is the old canonical literature: Surya 
Prajnapti, Jambu Dvipa Prajnapti, Sthananga Sutra, Uttaradhyayana Sutra, 
Bhagavati Sutra, and Anuyoga Dvara Sutra. The first two works are from the 
third or fourth century BC, and the others are from at least two centuries 
later. As mentioned in the previous section, the Sthananga Sutra gives a 
list of mathematical topics that were studied at the time. Expressed in their 
modern equivalents, they were the theory of numbers, arithmetical opera-
tions, geometry, operations with fractions, simple equations, cubic equa-
tions, biquadratic (quartic) equations, and permutations and combinations. 
This classification by the Jains was adopted by later mathematicians.

Given the paucity of existing evidence and the little scrutiny it has re-
ceived, our survey of Jaina mathematics must be rather piecemeal. We shall 
examine four main areas in which the Jaina contribution was distinctive.20

Theory of Numbers
Like the Vedic mathematicians, the Jains had an interest in the enumeration 
of very large numbers, which was intimately tied up with their philosophy 
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