Chapter

Iiippocrates’ Quadrature

of the Lune
(ca. 440 B.C.)

The Appearance of Demonstrative Mathematics

Our knowledge of the very early development of mathematics is largely
speculative, pieced together from archaeological fragments, architec-
tural remains, and educated guesses. Clearly, with the invention of agri-
culture in the years 15,000-10,000 B.c., humans had to address, in at least
a rudimentary fashion, the two most fundamental concepts of mathe-
matics: multiplicity and space. The notion of multiplicity, or “number,”
would arise when counting sheep or distributing crops; over the centu-
ries, refined and extended by generations of scholars, these ideas
evolved into arithmetic and later into algebra. The first farmers likewise
would have needed insight into spatial relationships, primarily in regard
to the areas of fields and pastures; such insights, carried down through
history, became geometry. From the beginnings of civilization, these
two great branches of mathematics—arithmetic and geometry—would
have coexisted in primitive form.

This coexistence has not always been a harmonious one. A continu-

ing feature of the history of mathematics has been the prevailing tension
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between the arithmetic and the geometnﬁ. Ther(t‘i: have beg,, timeg
branch has overshadowed the other and whep one py Whe,
o ically superior to its more suspect Counte $ bee
regarded as logically s P ) ould turn the tap, Ipary. T
new discovery, a new point of view, w , ables, 1, 5 fn,
as a surprise that mathematics, like al;t.:)rlgl:snc cér.}lterature, ascboflle
subject to such trends in the course ol its lg and j lttstnous hisg,, St
We find clear signs of mathe.matlcal deve opment in the it 0
of ancient Egypt. For the Egyptians, the emphasts Was on the b
side of mathematics as a facilitator of trade,. agriculture, 5p4 the
increasingly complex aspects of e\(eryday life. f“ChanlOgical .
indicate that by 2000 B.c. the Egyptians ltad a primitive NUme, scords
as well as some geometric ideas about triangles, Pyramids and ¢ Ystem
There is a tradition, for instance, that Egyptian architectg useq a'e like
device for making right angles. They would tie 12 equally |op, % Cleye,
of rope into a loop, as shown in Figure 1.1. Stretching five COnsgmefns
segments in a straight line from Bto Cand then Pulling the : Cltiye
A, they thus formed a rigid triangle with a right angle BAC, Th tayg 5
uration, laid upon the ground, allowed the workers to construct 5 Config.
right angle at the corner of a pyramid, temple, or other buildip Perfeq
Implicit in this construction is an understanding of the fa
relationship of right triangles. That is, the Egyptians seemed 80reap
that a triangle with sides of length 3, 4, and 5
Of course, 3* + 4> = 9 + 16 = 25 = 52

of one of the most important relationships i
Figure 1.2).

; A
FIGURE 1.1
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B
FIGURE 1.2

Technically, this Egyptian insight was not a case of the Pythagorean
theorem itself, which states, “If ABAC s a right triangle, then @* = b* +
c*.” Rather, it was an example of the converse of the Pythagorean theo-
rem: “If @* = b + ¢’, then ABAC is a right triangle.” That is, for a prop-
osition of the form “If P, then Q,” the related statement “If Q, then P’
is called the proposition’s “converse.” As we shall see, a perfectly true
statement may have a false converse, but in the case of the famous
Pythagorean theorem, both the proposition and its converse are valid. In
fact, these will be the ‘“‘great theorems” in the next chapter.

Although the Egyptians seemed to have some insight into the geom-
etry of 3-4-5 right triangles, it is doubtful they possessed the broader
understanding that, for instance, a 5-12-13 triangle or a 65-72-97 triangle
likewise contains a right angle (since in each case a* = b* + ¢*). More
critically, the Egyptians gave no indication of how they might prove this
relationship. Perhaps they had some logical argument to support their
observation about 3-4-5 triangles; perhaps they hit upon it purely by trial
and error. In any case, the notion of proving a general mathematical
result by a carefully crafted logical argument is nowhere to be found in
Egyptian writings.

The following example of Egyptian mathematics may be illuminat-
ing: it is their approach to finding the volume of a truncated square pyr-
amid—that is, a square pyramid with its top lopped off by a plane par-
allel to the base (see Figure 1.3). Such a solid is today called th.e frustum
of a pyramid. The technique for finding its volume appears in the so-

called “Moscow Papyrus” from 1850 B.C.:

If you are told: A truncated pyramid of 6 for the vertical height by 4 on the
base by 2 on the top. You are to square this 4, result 16. You are to double
4, result 8. You are to square 2, result 4. You are 10 add the 16, the.8, ?qd
the 4, result 28. You are to take 2 third of 6, result 2. You are to take 28 twice,

result 56. See, it is 56. You will find it right.
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FIGURE 1.3

This is a most remarkable prescription., which indeed Yielqs the
rect answer for the frustum’s volume. Notice, however, what it does A
do. It does not give a general formula to cover fru.sta Of'other dinme,
sions. Egyptians would have to generalize fl‘OII.l this particular case
order to determine the volume of 2 different-sized frustum, a proc
that could be a bit confusing. Far simpler and more concise is our mo

ern formula

V=Y%b(ad + ab+ ¥)

where a is the side of the square on the bottom, b is the side of the
square on the top, and 4 is the frustum’s height. Worse, there was no
indication of why this Egyptian recipe provided the correct answer
Instead, a simple “You will find it right”” sufficed.

It is probably dangerous to draw sweeping conclusions from a par
ticular example, yet historians have noted that 4 dogmatic approach to
mathematics was certainly in keeping with the authoritarian society that
was pharaonic Egypt. Inhabitants of that ancjen; land wer di y d
to give unquestioned obedience to their ryjers. By amtloe o
sented with an authoritative mathemajcy] technique thgf’ - o
“you will find it right,” Egyptian subjects were hardly like] e
a more thorough explanation of why it worked. In the lamdy e
aoh, you did what you were told, whether i erecting a co] Of the Phar

9ssal temple

or in solving a math problem. Those adamantly questionin
would end up as mummies before their time. § the system

Another great ancient civilization—or, more precise]y,
2 CiVj“za.
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tions—flourished in Mesopotamia and produced mathematics signifi-
cantly more advanced than that of Egypt. The Babylonians, for instance,
solved falrl_y sophisticated problems with a definite algebraic character,
and the existence of a clay tablet called Plimpton 322, dated roughly
between 1900 and 1600 s.c., shows that they definitely understood the
Pythagorean theorem in far more depth than their Egyptian counterparts;
that is, the Babylonians recognized that a 5-12-13 triangle or a 65-72-97
triangle (and many more) was right. In addition, they developed a
sophisticated place system for their numerals. We, of course, are accus-
tomed to a base-10 numeral system, obviously derived from the 10 fin-
gers of the human hand, so it may seem a bit odd that the Babylonians
chose a base-60 system. While no one speculates that these ancient peo-
ple had 60 fingers, their choice of base can still be seen in our measure-
ment of time (60 seconds per minute) and angles (6 X 60° = 360° in
a circle).

But for all of their achievements, the Mesopotamians likewise
addressed only the question of “how” while avoiding the much more
significant issue of “why.” Those seeking the appearance of a demon-
strative mathematics—a theoretical, deductive system in which empha-
sis was placed upon proving critical relationships—would have to look
to a later time and a different place.

The time was the first millennium B.c., and the place was the Aegean
coasts of Asia Minor and Greece. Here there arose one of the most sig-
nificant civilizations of history, whose extraordinary achievements would
forever influence the course of western culture. Engaged in a thriving
commerce, both within their own lands and across the Mediterranean,
the Greeks developed into a mobile, adventuresome people, relatively
prosperous and sophisticated, and considerably more independent in
thought and action than the western world had seen before. These curi-
ous, free-thinking merchants were much less likely to submit meekly to
authority. Indeed, with the development of Greek democracy, the citi-
zens became the authority (although it must be stressed that citizenship
in the classical world was very narrowly defined). To such individuals,
everything was open to debate and analysis, and ideas were not about to
be accepted with a passive, unquestioning obedience.

By 400 B.c., this remarkable civilization could already boast a rich,
some would say unsurpassed, intellectual heritage. The epic poet
Homer, the historians Herodotus and Thucydides, the dramatists Aes-
chylus, Sophocles, and Euripides, the politician Pericles, and the philos-
opher Socrates—these individuals had all left their marks as the fourth
century B.c. began. Inhabitants of the modern world, where fame can
fade so quickly, may find it astonishing that these names have endured
gloriously for over 2000 yeats. To this day, we admire their boldness in

_



n condition to the penetryy; -
subjecting Nature and the gﬁz?u contaminated by large ¢ 08;;8 ligh, &
reason. Granted, it was reash Greek thinkers were profoyy, dlv o S4pg,
sifion-and |gubsaice, HEEE Iways correct, the Greeks Y sy

ir conclusions were not alway: " i

o th(texlzftctheirs was the path that would lga from a barbarous \ &5y
;n:zgrteamed-of future. The term “awal'ce'mngt ;: often used i dessiig)
ing this special moment in history, and dlst 1Zfa;;e.m l:l:;asn:(m d wag indeed
arising from the slumber of .thousan siflociespiig O confr
strange, mysterious world with Nature potent WeaPOn\th
hurgirétinvlv::‘cenainly the case with mathe.mati.cs. Around §00 56 15 ¢
town of Miletus on the western coast of Asia Mmor‘,‘ there liveq the re:
Thales (ca. 640-ca. 546 B.c.), one of the so-ca!led Seven Wise Moo, ¢
antiquity. Thales of Miletus is generally credited with being the Fat
of demonstrative mathematics, the first scholgr who supplied the gy '
along with the “how.” As such, he is the earlfest. known mathematician

We have very little hard evidence about his life. Indeed, he emerges'

from the mists of the past as a pseudo-mythical figure, ang it is anyheq,,
guess as to the truth of the exploits and discoveries attriby, e
Looking back seven centuries, the bio

ed to p;

grapher Plutarch (4 42_?;8)'

~ wrote that “. .. at that time Thales alone had raised philosophy aboy,

mere practice into speculation.” A noted mathematician anq aStr0nomeer

who somehow predicted the solar eclipse in 585 p.c,, Thales, ke the

stereotypical scientist, was chronically absent-minded ang incessany

preoccupied—according to legend, he once was strolling along, gazinz
upward at his beloved stars, when he tumbled into an open

His “fatherhood” of demonstrati

n0net 8.

well.

ve mathematics notwithstanding
Thales never married. When Solon, a contemporary, asked why, Thale;
arranged a cruel ruse whereby a mes

senger brought Solon news of his
son’s death. According to Plutarch, Solon then
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mended that on the next trip to market the farmer load the donkey with
sponges. {

It was certainly not kindness to man or beast that earned Thales his
high reputation in mathematics. Rather, it was his insistence that geo-
metric statements not be accepted simply because of their intuitive plau-
sibility; instead they had to be subjected to rigorous, logical proof. This
is no small legacy to leave the discipline of mathematics.

What, precisely, are some of his theorems? Tradition holds that it was
Thales who first proved the following geometric results:

® Vertical angles are equal.

m The angle sum of a triangle equals two right angles.
® The base angles of an isosceles triangle are equal.
® An angle inscribed in a semicircle is a right angle.

In none of these cases do we have any record of his proofs, but we can
speculate on their nature. For instance, consider the last proposition
above. The proof given below is taken from Euclid’s Elements, Book III,
Proposition 31, but it is simple and direct enough to be a prime candi-
date for Thales’ own.

THEOREM An angle inscribed in a semicircle is a right angle.

PROOF Let a semicircle be drawn with center O and diameter BC, and
choose any point 4 on the semicircle (Figure 1.4). We must prove that
LBAC is right. Draw line OA and consider AAOB. Since OB and OA are
radii of the semicircle, they have the same length, and so AAOB is isos-
celes. Hence, as Thales had previously proved, ZABO and ZBAO are
equal (or, in modern terminology, congruent); call them both a. Like-




8 ® JOURNEY THROUGH GENIUS

length, and so o4 _
i 04 and OC have the same "
Z:ﬁe[,}:gn?ggﬁ’ B. But, from the large triangle BAC, we see that OCA;

ioht angles = ZABC + LACB + LBAC
i g at+ B+ (a+pB)
=2a+ 26 =2(a+p)

Hence, one right angle = %[2 right angles] =¥[2(a + B8)] = 4 4 8«
LBAC. This is exactly what we were to prove.

Q.Ep,

(Note: 1t has become customary, upon the completion of 2 proof,
insert the letters “Q.E.D.,” which abbreviate the Latin Quod erg
demonstrandum [Which was to be proved]. This alerts the reader 1o the
fact that the argument is over and we are about to set off in new
directions.).

After Thales, the next major figure in Greek mathematics was Pythag.
oras. Born in Samos around 572 B.C., Pythagoras lived and worked in the

omy, or philosophy, the centrg]
3 n ”»

evident. The moderp noti > umber” was everywhere

by “mathematization”

viewpoint.
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AB = p(EK)
A B
CD= q(EF
I 1 L :
| o ] T ] )
c “ID
E F
FIGURE 1.5

That is, for some WI?OIe nu.mbers Pand g, ABis composed of p segments
congruent to EFwhile CD is composed of g such segments (Figure 1.5).
Cons?qUQtly, AB/CD = p(ER)/q(EP) = 2/q. (Here we are using the
notation A{?.to s.tand for the length of segment AB). Since p/qis the ratio
of two positive integers, we say that the ratio of the lengths of commen-
surable segments is a “rational” number.

Intuitively, the Pythagoreans felt that any two magnitudes are com-
mensurable. Given two line segments, it seemed preposterous to doubt
the existence of another segment EF dividing evenly into both, even if
it took an extremely tiny EFto do the job. The presumed commensura-
bility of segments was critical to the Pythagoreans, not only because they
used this idea in their proofs about similar triangles but also because it
seemed to support their philosophical stance on the central role of
whole numbers.

However, tradition credits the Pythagorean Hippasus with discover-
ing that the side of a square and its diagonal (GH and GI in Figure 1.6)
are not commensurable. That is, no matter how small one goes, there is
no magnitude EF dividing evenly into both the square’s side and its
diagonal. ;

This discovery had a number of profound consequences. Obviously,
it shattered those Pythagorean proofs that rested upon the supposgd
commensurability of all segments. It would be almost two centuries
before the mathematician Eudoxus found a way to patgh up the theory
of similar triangles by devising alternative proofs that did not rely_' upon
the concept of commensurability. Secondly, it had an unsetthpg impact
upon the supremacy of whole numbers, for if not all quantities were
commensurable, then whole numbers were somehow madequatg to rep-
resent the ratios of all geometric lengths. Consequently, the discovery
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G H FIGURE 1.6

firmly established the superiority of geometry over arithmetic in al] gy,
sequent Greek mathematics. In the Figure 1.6, for instance, the side and
diagonal of the square are beyond suspicion as geometric objects. Bu,
as numbers, they presented a major problem. For, if we imagine that the
side of the square above has length 1, then the Pythagorean theorem
tells us that the length of the diagonal is \/2; and, since side and diag-
onal are not commensurable, we see that V2 cannot be written as 2 ratio-
nal number of the form P/q. Numerically, then, /2 is an “irrational,”
whose arithmetic character is quite mysterious. Far better, thought the
Greeks, to avoid the numerical approach altogether and concentrate on

magnitudes simply as geometric entities. This preference for geometry
over arithmetic would dominate 2 thousand years of Greek mathematics.

the relatively austere discipline of mathematics, inking, even in
Thales and Pythagoras, while pProminent in legend ang traditi
obscure, shadowy figures from the distant past. Our next indiv'dm(‘m' are
pocrates of Chios (ca. 440 B.c.) is a little more solid, fact jlt ual, H.lp.
that we attribute the earliest mathematical proof that hag sun,rivelcs; fo him
sonably authentic form. This will be the subject of our - in rea-
theorem. Ist great

Hippocrates was born on the island of Chjog sometime in g,
century B.C. This was, of course, the same region tha, produced hiseﬂf&h
trious predecessors mentioned earlier. (Note in Passing that Chijog o us-
far from the island of Cos, where another “Hippocrates’ was bongl nog

i u
this time; it was Hippocrates of Cos—not. our H‘PPOCrates\wh ot
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pecame the father of Greek medicine and originator of the physicians’

mppocrauc oath.)
Of the mathematical Hippocrates, we have scant biographical infor-
mation. Aristotle wrote that, while a talented »
geometer, he “. .. seems
in other respects to have been stupid and lacking i i
ly example of the st g in sense.” This is an
early P ereotype of the mathematician as being somewhat
overwhelmed by the demands of evefyday life. Le & .
es earned thi : : . Legend has it that Hip-
pocrat is reputation after being defrauded of his fortune by
pirates, who apparently took him for an easy mark. Needing to make 2
gnanci?l r;::overy, 1;ehtrallfveled to Athens and b;egan tea%hing thus
ecoming him one of the few indivi b8
o e Fouits Al rewards. ividuals ever to enter the teaching pro-
In any case, Hippocrates is remembered for two signal contributions
to geometry. One was his composition of the first Elements, that is, the
first exposition developing the theorems of geometry precis;:ly and’log-
ically from a few given axioms or postulates. At least, he is credited with
such a work, for nothing remains of it today. Whatever merits his book
had were to be eclipsed, over a century later, by the brilliant Elements
of Euclid, which essentially rendered Hippocrates’ writings obsolete.
still, there is reason to believe that Euclid borrowed from his predeces-
sor, and thus we owe much to Hippocrates for his great, if lost, treatise.
The other significant Hippocratean contribution—his quadrature of
the lune—fortunately has survived, although admittedly its survival is
tenuous and indirect. We do not have Hippocrates’ own work, but Eude-
mus’ account of it from around 335 B.C., and even here the situation is
murky, bgcause we do not really have Eudemus’ account either. Rather,
we have a summary by Simplicius from A.D. 530 that discussed the writ-
ings of Eudemus, who, in turn, had summarized the work of Hippocra-

tes. The fact that the span between Simplicius and Hippocrates is almost
he time between us and Leif Erikson—indi-

a thousand years—roughly t
cates the immense difficulty historians face when considering the math-
heless, there is no reason to doubt the

ematics of the ancients. Nonet
general authenticity of the work in question.

Some Remarks on Quadrature
Before examining Hippocrates’ lunes, we need to address the notion of
“quadrature.” It is obvious that the ancient Greeks were enthralled by
the symmetries, the visual beauty, and the subtle logical structure of
geometry. Particularly intriguing was the manner in which the simple
and elementary could serve as foundation for the complex and intricate.

the next chapter as we follow Euclid

This will become quite apparent in



