MA 330 ASSIGNMENT \# 9

Problem 1:

On page 224 in Journey Through Genius, it is mentioned that Euler proved Fermat's claim that if a number is of the form $4 k+3$, then it is not a sum of two squares. Prove Fermat's claim yourself, i.e., prove that a number of the form $4 k+3$ is not expressible as $a^{2}+b^{2}$ for positive integers a and b.

HINT: Consider what happens when you evaluate a and b with different combinations of odd and even numbers (i.e., consider this mod 2).

Problem 2:

Prove that any number of the form $8 k+7$ is not a sum of three squares, i.e., $8 k+7$ is not equal to $a^{2}+b^{2}+c^{2}$ for any triple of positive integers a, b, and c.

HINT: If x, y, and z are integers, what are the possible remainders of $x^{2}+y^{2}+z^{2}$ after division by 8 ? What happens when you evaluate x, y, and z using different combinations of numbers of the form $8 n+k$? (i.e., consider this mod 8.)

NOTE: In 1770, Lagrange proved that every number is a sum of four squares. This is AMAZING, and it is an example of how "high-dimensional" geometry (in other words, having lots of variables when you are doing algebra), can allow more freedom for solving problems than two or three dimensional geometry.

