Assignment 11

1. Let L be the span of a nonzero vector \vec{u} in \mathbb{R}^{2}. For \vec{y} in \mathbb{R}^{2} we say the reflection of y over L is

$$
\operatorname{ref}_{L}(\vec{y})=2 \operatorname{proj}_{L} \vec{y}-\vec{y}
$$

(a) Compute the projection of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ over the line through the origin and the point $(1,2)$.
(b) Show that reflection is a linear transformation.
2. The vectors $\vec{u}_{1}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$ and $\vec{u}_{2}=\left[\begin{array}{c}5 \\ -1 \\ 2\end{array}\right]$ are orthogonal. The vector $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is not orthogonal to \vec{u}_{1} and \vec{u}_{2}, but it is also not in the span of \vec{u}_{1} and \vec{u}_{2}. Use these facts to construct a vector orthogonal to \vec{u}_{1} and \vec{u}_{2}.
3. Let $\vec{y}=\left[\begin{array}{c}3 \\ -1 \\ 1 \\ 13\end{array}\right], \vec{u}_{1}=\left[\begin{array}{c}1 \\ -2 \\ -1 \\ 2\end{array}\right]$, and $\vec{u}_{2}=\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 3\end{array}\right]$.
(a) Find the point in the plane spanned by \vec{u}_{1} and \vec{u}_{2} that is closest to \vec{y}.
(b) What is the distance from \vec{y} to the plane spanned by \vec{u}_{1} and \vec{u}_{2} ?
4. Find an orthogonal basis for the column space of the matrix $\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
5. Let $A=\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right]$
(a) Find an orthogonal basis for the column space of A.
(b) Find the projection of $\vec{b}=\left[\begin{array}{l}7 \\ 2 \\ 7 \\ 0\end{array}\right]$ onto the column space of A.
(c) Find the least squares solution to $A \vec{x}=\vec{b}$.

