Assignment 3

1. (a) Compute the span of $\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right]$.
(b) Give a geometric description of this span.
2. (a) Compute the span of $\left[\begin{array}{c}4 \\ 2 \\ 10\end{array}\right]$ and $\left[\begin{array}{c}6 \\ 3 \\ 15\end{array}\right]$.
(b) Give a geometric description of this span.
3. Let A be a 3×2 matrix (so three rows and two columns). Explain why the equation $A \vec{x}=\vec{b}$ cannot be solved for every \vec{b} in \mathbb{R}^{3}. What about A a 4×3 matrix?
4. If A is a 3×3 matrix and $\vec{v}_{1}, \vec{v}_{2}, \vec{y}_{1}, \vec{y}_{2}$ are vectors so that $A \vec{y}_{1}=\vec{v}_{1}$ and $A \vec{y}_{2}=\vec{v}_{2}$ find a vector \vec{w} so that $A \vec{w}=\vec{v}_{1}+3 \vec{v}_{2}$.
5. Suppose $A \vec{x}=\vec{b}$ has a solution. Explain why the solution is unique exactly when $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
